In eukaryotic cells, the exchange of macromolecules between the nucleus and cytoplasm is highly selective and requires specialized soluble transport factors. Many of them belong to the importin-β superfamily, the members of which share an overall superhelical structure owing to the tandem arrangement of a specific motif, the HEAT repeat. This structural organization leads to great intrinsic flexibility, which in turn is a prerequisite for the interaction with a variety of proteins and for its transport function. During the passage from the aqueous cytosol into the nucleus, the receptor passes the gated channel of the nuclear pore complex filled with a protein meshwork of unknown organization, which seems to be highly selective owing to the presence of FG-repeats, which are peptides with hydrophobic patches. Here, the structural changes of free importin-β from a single organism, crystallized in polar (salt) or apolar (PEG) buffer conditions, are reported. This allowed analysis of the structural changes, which are attributable to the surrounding milieu and are not affected by bound interaction partners. The importin-β structures obtained exhibit significant conformational changes and suggest an influence of the polarity of the environment, resulting in an extended conformation in the PEG condition. The significance of this observation is supported by SAXS experiments and the analysis of other crystal structures of importin-β deposited in the Protein Data Bank.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1107/S2059798316004940 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
Low-temperature proton exchange membrane fuel cells (PEMFCs) reuqire highly pure hydrogen gas due to their extreme sensitivity to carbon monoxide (CO) contamination, which poses a challenge for using cost-effective reformed hydrogen sources. To address this issue, we have developed a surface modification strategy by applying a 0.5-0.
View Article and Find Full Text PDFAnal Chem
January 2025
Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Hunan Provincial University Key Laboratory for Environmental and Ecological Health, College of Chemistry, Xiangtan University, Xiangtan 411105, P.R. China.
The challenge of "false positive" signals significantly complicates tumor localization and surgical resection, which are pivotal for successful tumor surgeries. Therefore, the development of a method for preoperative tumor localization and intraoperative margin determination holds considerable promise for improving surgical outcomes. In this study, a zero-crosstalk ratiometric tumor-targeting near-infrared (NIR) fluorescent probe was developed for precise cancer diagnosis and intraoperative navigation via NIR fluorescence imaging.
View Article and Find Full Text PDFAnal Chem
January 2025
Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China.
Detection of trace gases, such as radioactive carbon dioxide, clumped isotopes, and reactive radicals, is of great interest and poses significant challenges in various fields. Achieving both high selectivity and high sensitivity is essential in this context. We present a highly selective molecular spectroscopy method based on comb-locked, mid-infrared, cavity-enhanced, two-photon absorption.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Allen Institute for Brain Science, Seattle, WA, USA.
Background: Applying single-cell RNA sequencing (scRNA-seq) to the study of neurodegenerative disease has propelled the field towards a more refined cellular understanding of Alzheimer's disease (AD); however, directly linking protein pathology to transcriptomic changes has not been possible at scale. Recently, a high-throughput method was developed to generate high-quality scRNA-seq data while retaining cytoplasmic proteins. Tau is a cytoplasmic protein and when hyperphosphorylated is integrally involved in AD progression.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
the University of Texas at Austin, Austin, TX, USA.
Background: Imbalanced Fe levels can lead to oxidative stress and initiate ferroptosis, an Fe-dependent cell death that involves lipid peroxidation and can lead to neuron cell loss in neurodegenerative diseases including Alzheimer's disease (AD). While the Fe/Fe ratio has been identified as the primary determining factor for lipid peroxidation, the role of Fe redox equilibrium and dynamic in AD is not well understood, due to limited tools for visualizing Fe and Fe simultaneously. To overcome this limitation, we recently reported DNAzyme-based sensors for simultaneous imaging of Fe and Fe.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!