Online Design Aid for Evaluating Manure Pit Ventilation Systems to Reduce Entry Risk.

Front Public Health

Agricultural and Biological Engineering Department, Pennsylvania State University , University Park, PA , USA.

Published: June 2016

On-farm manure storage pits contain both toxic and asphyxiating gases such as hydrogen sulfide, carbon dioxide, methane, and ammonia. Farmers and service personnel occasionally need to enter these pits to conduct repair and maintenance tasks. One intervention to reduce the toxic and asphyxiating gas exposure risk to farm workers when entering manure pits is manure pit ventilation. This article describes an online computational fluid dynamics-based design aid for evaluating the effectiveness of manure pit ventilation systems to reduce the concentrations of toxic and asphyxiating gases in the manure pits. This design aid, developed by a team of agricultural engineering and agricultural safety specialists at Pennsylvania State University, represents the culmination of more than a decade of research and technology development effort. The article includes a summary of the research efforts leading to the online design aid development and describes protocols for using the online design aid, including procedures for data input and for accessing design aid results. Design aid results include gas concentration decay and oxygen replenishment curves inside the manure pit and inside the barns above the manure pits, as well as animated motion pictures of individual gas concentration decay and oxygen replenishment in selected horizontal and vertical cut plots in the manure pits and barns. These results allow the user to assess (1) how long one needs to ventilate the pits to remove toxic and asphyxiating gases from the pit and barn, (2) from which portions of the barn and pit these gases are most and least readily evacuated, and (3) whether or not animals and personnel need to be removed from portions of the barn above the manure pit being ventilated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4880564PMC
http://dx.doi.org/10.3389/fpubh.2016.00108DOI Listing

Publication Analysis

Top Keywords

design aid
28
manure pit
20
toxic asphyxiating
16
manure pits
16
online design
12
pit ventilation
12
asphyxiating gases
12
manure
10
aid evaluating
8
ventilation systems
8

Similar Publications

Official development agencies are increasingly supporting civil society lobby and advocacy (L&A) to address poverty and human rights. However, there are challenges in evaluating L&A. As programme objectives are often to change policies or practices in a single institution like a Government Ministry, L&A programmes are often not amenable to large-n impact evaluation methods.

View Article and Find Full Text PDF

Objective: The objective of this study is to analyse the perspectives of screening candidates and healthcare professionals on shared decision-making (SDM) in prostate cancer (PCa) screening using the prostate-specific antigen (PSA) test.

Design: Descriptive qualitative study (May-December 2022): six face-to-face focus groups and four semistructured interviews were conducted, transcribed verbatim and thematically analysed using ATLAS.ti software.

View Article and Find Full Text PDF

A Comparison Study of Person Identification Using IR Array Sensors and LiDAR.

Sensors (Basel)

January 2025

Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan.

Person identification is a critical task in applications such as security and surveillance, requiring reliable systems that perform robustly under diverse conditions. This study evaluates the Vision Transformer (ViT) and ResNet34 models across three modalities-RGB, thermal, and depth-using datasets collected with infrared array sensors and LiDAR sensors in controlled scenarios and varying resolutions (16 × 12 to 640 × 480) to explore their effectiveness in person identification. Preprocessing techniques, including YOLO-based cropping, were employed to improve subject isolation.

View Article and Find Full Text PDF
Article Synopsis
  • This paper addresses the challenge of accurately segmenting images of Ming-style furniture, aiming to enhance preservation and analysis of this cultural heritage.
  • It introduces two innovations: the Material Attribute Prompter (MAP) for automatic prompt generation based on material properties, and the Structure Refinement Module (SRM) to improve segmentation accuracy through feature combination.
  • The proposed method, validated with the MF2K dataset consisting of 2073 annotated images, shows significant improvement in segmentation performance compared to existing models, highlighting the effectiveness and efficiency of the MAP and SRM.
View Article and Find Full Text PDF

In order to increase the thermal conductivity of neat epoxy resin and broaden its practical application in high-voltage insulation systems, we have constructed four kinds of epoxy resin nanocomposite models (a neat epoxy resin (EP), a graphene-doped epoxy resin nanocomposite (EP/GR) and hydroxyl- or carboxyl-functionalized graphene-doped epoxy resin nanocomposites (EP/GR-OH or EP/GR-COOH)) to systematically investigate their thermodynamic and electrical properties using molecular dynamics (MD) simulations. Compared with the EP model, carboxyl-functionalized graphene particles enhanced the thermal conductivity of the EP/GR-COOH model by 66.5% and increased its by 26.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!