Life on Earth relies on chiral molecules-that is, species not superimposable on their mirror images. This manifests itself in the selection of a single molecular handedness, or homochirality, across the biosphere. We present the astronomical detection of a chiral molecule, propylene oxide (CH3CHCH2O), in absorption toward the Galactic center. Propylene oxide is detected in the gas phase in a cold, extended molecular shell around the embedded, massive protostellar clusters in the Sagittarius B2 star-forming region. This material is representative of the earliest stage of solar system evolution in which a chiral molecule has been found.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.aae0328 | DOI Listing |
Small
January 2025
Department of Chemistry, Dr. Vishwanath Karad MIT World Peace University, Survey No, 124, Paud Rd, Kothrud, Pune, Maharashtra, 411038, India.
Surface Plasmon Polaritons (SPPs) and Localized Surface Plasmon Resonances (LSPRs) are fundamental phenomena in plasmonics that enable the confinement of electromagnetic waves beyond the diffraction limit. This confinement results in a significant enhancement of the electric field, making this phenomenon particularly beneficial for sensitive detection applications. However, conventional plasmonic sensors face several challenges, notably their difficulty in distinguishing chiral molecules, which are vital in drug development.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Institute of Photonics & Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.
There has been a significant recent surge in the number of studies interrogating chiral molecules in the gas phase using photoelectron circular dichroism (PECD) and related techniques. These investigations have revealed new fundamental insights into the structure and dynamics of chiral species and, furthermore, have the potential to revolutionize the field of chiral analysis for more practical and industrial applications. As it has been just over 20 years since the first PECD imaging experiments were demonstrated - and 10 years since the last dedicated general perspective article on the topic - a new overview now seems extremely timely.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China. Electronic address:
Background: Drug enantiomers often display distinguishable or even opposite pharmacological and toxicologic activities. Therefore it is of great necessity to discriminate enantiomers for guaranteeing safetyness and effectiveness of chiral drugs. Facile chiral discrimination has long been a noticeable challenge because of the minimal differences in physicochemical properties of enantiomers.
View Article and Find Full Text PDFAnal Chem
January 2025
College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China.
Introducing chiral molecules into metal-organic frameworks (MOFs) to obtain chiral MOFs (CMOFs), the tunability of their structures makes them a highly anticipated class of chiral materials for electrochemical sensing. However, the structure of CMOFs is often limited by synthesis challenges, and introducing chiral molecules into MOFs often leads to a decrease in their internal space. This study introduces a defect engineering strategy into the synthesis of CMOFs to obtain CMOFs with defects, which is an efficient synthesis method.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Engineering "Enzo Ferrari", (DIEF), Univ. of Modena, Via Vivarelli 10, 41125 Modena, Italy.
Great efforts have been made in the last few decades to realize electronic devices based on organic molecules. A possible approach in this field is to exploit the chirality of organic molecules for the development of spintronic devices, an applicative way to implement the chiral-induced spin selectivity (CISS) effect. In this work we exploit enantiopure tetrathiafulvalene (TTF) derivatives as chiral inducers at the nanoscale.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!