Molecular Evolution and Functional Characterization of a Bifunctional Decarboxylase Involved in Lycopodium Alkaloid Biosynthesis.

Plant Physiol

Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba 260-8675, Japan (S.B., A.M., K.A., K.K., H.U., Mad.Y., K.S., Mam.Y.);Faculty of Pharmacy, Mahidol University, Ratchathewi, Bangkok 10400, Thailand (S.B.);Kyushu Institute of Technology, Iizuka-shi, Fukuoka 820-8502, Japan (K.H.);RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama 230-0045, Japan (R.S., A.O., K.S.); andFaculty of Agriculture, Yamagata University, Tsuruoka 997-8555, Japan (A.O.)

Published: August 2016

Lycopodium alkaloids (LAs) are derived from lysine (Lys) and are found mainly in Huperziaceae and Lycopodiaceae. LAs are potentially useful against Alzheimer's disease, schizophrenia, and myasthenia gravis. Here, we cloned the bifunctional lysine/ornithine decarboxylase (L/ODC), the first gene involved in LA biosynthesis, from the LA-producing plants Lycopodium clavatum and Huperzia serrata We describe the in vitro and in vivo functional characterization of the L. clavatum L/ODC (LcL/ODC). The recombinant LcL/ODC preferentially catalyzed the decarboxylation of l-Lys over l-ornithine (l-Orn) by about 5 times. Transient expression of LcL/ODC fused with the amino or carboxyl terminus of green fluorescent protein, in onion (Allium cepa) epidermal cells and Nicotiana benthamiana leaves, showed LcL/ODC localization in the cytosol. Transgenic tobacco (Nicotiana tabacum) hairy roots and Arabidopsis (Arabidopsis thaliana) plants expressing LcL/ODC enhanced the production of a Lys-derived alkaloid, anabasine, and cadaverine, respectively, thus, confirming the function of LcL/ODC in plants. In addition, we present an example of the convergent evolution of plant Lys decarboxylase that resulted in the production of Lys-derived alkaloids in Leguminosae (legumes) and Lycopodiaceae (clubmosses). This convergent evolution event probably occurred via the promiscuous functions of the ancestral Orn decarboxylase, which is an enzyme involved in the primary metabolism of polyamine. The positive selection sites were detected by statistical analyses using phylogenetic trees and were confirmed by site-directed mutagenesis, suggesting the importance of those sites in granting the promiscuous function to Lys decarboxylase while retaining the ancestral Orn decarboxylase function. This study contributes to a better understanding of LA biosynthesis and the molecular evolution of plant Lys decarboxylase.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4972286PMC
http://dx.doi.org/10.1104/pp.16.00639DOI Listing

Publication Analysis

Top Keywords

lys decarboxylase
12
molecular evolution
8
functional characterization
8
production lys-derived
8
convergent evolution
8
evolution plant
8
plant lys
8
ancestral orn
8
orn decarboxylase
8
decarboxylase
7

Similar Publications

Polyamines are polycations derived from amino acids that play an important role in proliferation and growth in almost all living cells. In (the pneumococcus), modulation of polyamine metabolism not only plays an important regulatory role in central metabolism, but also impacts virulence factors such as the capsule and stress responses that affect survival in the host. However, functional annotation of enzymes from the polyamine biosynthesis pathways in the pneumococcus is based predominantly on computational prediction.

View Article and Find Full Text PDF

The Deficiency of Hypusinated eIF5A Decreases the Putrescine/Spermidine Ratio and Inhibits +1 Programmed Ribosomal Frameshifting during the Translation of Ty1 Retrotransposon in .

Int J Mol Sci

February 2024

Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China.

Programmed ribosomal frameshifting (PRF) exists in all branches of life that regulate gene expression at the translational level. The eukaryotic translation initiation factor 5A (eIF5A) is a highly conserved protein essential in all eukaryotes. It is identified initially as an initiation factor and functions broadly in translation elongation and termination.

View Article and Find Full Text PDF

Short-chain fatty acids reprogram metabolic profiles with the induction of reactive oxygen species production in human colorectal adenocarcinoma cells.

Comput Struct Biotechnol J

February 2023

State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China.

Short-chain fatty acids (SCFAs) exhibit anticancer activity in cellular and animal models of colon cancer. Acetate, propionate, and butyrate are the three major SCFAs produced from dietary fiber by gut microbiota fermentation and have beneficial effects on human health. Most previous studies on the antitumor mechanisms of SCFAs have focused on specific metabolites or genes involved in antitumor pathways, such as reactive oxygen species (ROS) biosynthesis.

View Article and Find Full Text PDF

Pyridoxal 5'-phosphate (PLP), an essential cofactor for multiple enzymes, was used as a protein decoy to prompt enzyme expression and activity for the first time. The best chassis, denoted as WJK, was developed using a pyridoxal kinase (PdxK) and integrated at the HK022 phage attack site of Escherichia coli W3110. When compared with the original strain, the amount and activity of lysine decarboxylase (CadA) in WJK were significantly increased by 100 % and 120 %, respectively.

View Article and Find Full Text PDF

Development of oxidoreductases for amino acid quantification and mutagenesis techniques for heterologous soluble expression: screening and selection strategies.

Biosci Biotechnol Biochem

April 2023

Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga, Japan.

The high stereo- and substrate specificities of enzymes have been utilized for microdetermination of amino acids. Here, I review the discovery of l-Arg oxidase from Pseudomonas sp. TPU 7192, l-Lys oxidase/decarboxylase from Burkholderia sp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!