AI Article Synopsis

  • The study explores the use of contrast-enhanced computed tomography (CECT) to assess glycosaminoglycan (GAG) and water content in human menisci, aiming to provide a less destructive, faster alternative to traditional methods.
  • The optimal concentrations of the iodinated contrast agents ioxaglate and CA4+ for effective GAG mapping were found to be ≥80 mgI/ml and 12 mgI/ml, respectively, with varying associations between contrast agent attenuation and GAG content over time.
  • The research suggests that CECT is a promising non-destructive imaging technique for evaluating meniscal composition compared to more time-consuming biochemical and histopathological techniques.

Article Abstract

The biochemical and histopathological techniques used to investigate meniscal content and structure are destructive and time-consuming. Therefore, this study evaluated whether contrast-enhanced computed tomography (CECT) attenuation and contrast agent flux using the iodinated contrast agents CA4+ and ioxaglate correlate with the glycosaminoglycan (GAG) content/distribution and water content in human menisci. The optimal ioxaglate and CA4+ contrast agent concentrations for mapping meniscal GAG distribution were qualitatively determined by comparison of CECT color maps with Safranin-O stained histological sections. The associations between CECT attenuation and GAG content, CECT attenuation and water content, and flux and water content at various time points were determined using both contrast agents. Depth-wise analyses were also performed through each of the native surfaces to examine differences in contrast agent diffusion kinetics and equilibrium partitioning. The optimal concentrations for GAG depiction for ioxaglate and CA4+ were ≥80 and 12 mgI/ml, respectively. Using these concentrations, weak to moderate associations were found between ioxaglate attenuation and GAG content at all diffusion time points (1-48 h), while strong and significant associations were observed between CA4+ attenuation and GAG content as early as 7 h (R  ≥ 0.67), being strongest at the equilibrium time point (48 h, R  = 0.81). CECT attenuation for both agents did not significantly correlate with water content, but CA4+ flux correlated with water content (R  = 0.56-0.64). CECT is a promising, non-destructive imaging technique for ex vivo assessment of meniscal GAG concentration and water content compared to traditional biochemical and histopathological methods. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1018-1028, 2017.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jor.23337DOI Listing

Publication Analysis

Top Keywords

water content
24
cect attenuation
16
contrast agent
12
attenuation gag
12
gag content
12
content
11
content structure
8
biochemical histopathological
8
contrast agents
8
ioxaglate ca4+
8

Similar Publications

Study on the effect of water content on physical properties of bentonite.

PLoS One

January 2025

Lecturer College of Civil and Traffic Engineering, Henan University of Urban Construction, Ping Dingshan, China.

Moisture content profoundly influences the engineering properties of expansive soil, a critical consideration in various geotechnical applications. This study delves into the intricate relationship between water content and the physical properties of bentonite, a key constituent of expansive soil. Through a comprehensive analysis encompassing fundamental physical properties, rheological characteristics, permeability behavior, and microscopic features, we elucidate the complex interplay between water content and bentonite behavior.

View Article and Find Full Text PDF

Mitigating matrix effects in oil and gas wastewater analysis: LC-MS/MS method for ethanolamines.

Environ Sci Process Impacts

January 2025

Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Parsons Laboratory, 15 Vassar Street, Cambridge, Massachusetts 02139, USA.

The high salinity and organic content in oil and gas wastewaters can cause ion suppression during liquid chromatography mass spectrometry (LC/MS) analysis, diminishing the sensitivity and accuracy of measurements in available methods. This suppression is severe for low molecular weight organic compounds such as ethanolamines (, monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA), -methyldiethanolamine (MDEA), and ,-ethyldiethanolamine (EDEA)). Here, we deployed solid phase extraction (SPE), mixed-mode LC, triple quadrupole MS with positive electrospray ionization (ESI), and a suite of stable isotope standards (, one per target compound) to correct for ion suppression by salts and organic matter, SPE losses, and instrument variability.

View Article and Find Full Text PDF

Biochar for ameliorating soil fertility and microbial diversity: From production to action of the black gold.

iScience

January 2025

Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India.

This article evaluated different production strategies, characteristics, and applications of biochar for ameliorating soil fertility and microbial diversity. The biochar production techniques are evolving, indicating that newer methods (including hydrothermal and retort carbonization) operate with minimum temperatures, yet resulting in high yields with significant improvements in different properties, including heating value, oxygen functionality, and carbon content, compared to the traditional methods. It has been found that the temperature, feedstock type, and moisture content play critical roles in the fabrication process.

View Article and Find Full Text PDF

Background: Salinity stress is a significant challenge in agriculture, particularly in regions where soil salinity is increasing due to factors such as irrigation practices and climate change. This stress adversely affects plant growth, development, and yield, posing a threat to the cultivation of economically important plants like . This study aims to evaluate the effectiveness by proactively applying indole-3-butyric acid (IBA) to cuttings as a practical and efficient method for mitigating the adverse effects of salinity stress.

View Article and Find Full Text PDF

Optimizing gelation time for cell shape control through active learning.

Soft Matter

January 2025

Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT 06510, USA.

Hydrogels are popular platforms for cell encapsulation in biomedicine and tissue engineering due to their soft, porous structures, high water content, and excellent tunability. Recent studies highlight that the timing of network formation can be just as important as mechanical properties in influencing cell morphologies. Conventionally, time-dependent properties can be achieved through multi-step processes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!