Objective: Inflammation plays a key role in the pathophysiological processes after intracerebral hemorrhage (ICH). Post-ICH macrophages infiltrate the brain and release pro-inflammatory factors (tumor necrosis factor-α), amplifying microglial activation and neutrophil infiltration. Platelet-derived growth factor receptor-β (PDGFR-β) is expressed on macrophages and it's activation induces the recruitment of macrophages. Platelet-derived growth factor-D (PDGF-D) is an agonist with a significantly higher affinity to the PDGFR-β compared to another isoform of the receptor. In this study, we investigated the role of PDGF-D in the pro-inflammatory response after ICH in mice.
Methods: A blood injection model of ICH was used in eight-week old male CD1 mice (weight 30g). Some mice received an injection of plasmin or PDGF-D. Gleevec, a PDGFR inhibitor, was administered at 1, 3 or 6h post-ICH. Plasmin was administered with or without PDGF-D siRNAs mixture or scramble siRNA. A plasmin-antagonist, ε-Aminocaproic acid (EACA), was co-administrated with the blood. The effects of ICH and treatment on the brain injury and post-ICH inflammation were investigated.
Results: ICH resulted in the overexpression of PDGF-D, associated with the infiltration of macrophages. PDGFR-inhibition decreased ICH-induced brain injury, attenuating macrophage and neutrophil infiltration, reducing microglial activation and TNF-α production. Administration of recombinant PDGF-D induced TNF-α production, and PDGFR-inhibition attenuated it. A plasmin-antagonist suppressed PDGFR-β activation and microglial activation. Plasmin increased PDGF-D expression, and PDGF-D inhibition reduced neutrophil infiltration.
Conclusion: ICH-induced PDGF-D accumulation contributed to post-ICH inflammation via PDGFR activation and enhanced macrophage infiltration. The inhibition of PDGFR had an anti-inflammatory effect. Plasmin is a possible upstream effector of PDGF-D. The targeting of PDGF-D may provide a novel way to decrease brain injury after ICH.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5175487 | PMC |
http://dx.doi.org/10.1016/j.expneurol.2016.06.010 | DOI Listing |
Cell Rep
January 2025
Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada. Electronic address:
Here, we used single cell RNA sequencing and single cell spatial transcriptomics to characterize the forebrain neural stem cell (NSC) niche under homeostatic and injury conditions. We defined the dorsal and lateral ventricular-subventricular zones (V-SVZs) as two distinct neighborhoods and showed that, after white matter injury, NSCs are activated to make oligodendrocytes dorsally for remyelination. This activation is coincident with an increase in transcriptionally distinct microglia in the dorsal V-SVZ niche.
View Article and Find Full Text PDFSubcell Biochem
January 2025
Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile.
Healthy brain functioning requires a continuous fine-tuning of gene expression, involving changes in the epigenetic landscape and 3D chromatin organization. Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and frontotemporal dementia (FTD) are three multifactorial neurodegenerative diseases (NDDs) that are partially explained by genetics (gene mutations and genetic risk factors) and influenced by non-genetic factors (i.e.
View Article and Find Full Text PDFMed Sci Sports Exerc
January 2025
School of Physical Education and Sports Science, South China Normal University, Guangzhou, CHINA.
Purpose: This study aimed to investigate the pathological responses of glial cells at different distances from amyloid plaques and the characteristics of oligodendrocyte precursor cells (OPCs) in perivascular clustering. Additionally, it sought to explore the impact of exercise training on AD pathology, specifically focusing on the modulation of glial responses and the effects of OPC perivascular clustering.
Methods: Three-month-old C57BL/6 and APP/PS1 mice were divided into four groups: wild-type sedentary, wild-type exercise, sedentary AD, and exercise AD groups.
J Neurophysiol
January 2025
Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro. México.
Microglia are the resident immune cells of the central nervous system (CNS), which have been classically viewed as involved in CNS responses to damage and tissue repair. However, microglia are constantly sensing neuronal network activity and changes in the CNS milieu, establishing complex state-dependent microglia-neuron interactions that impact their functions. By doing so, microglia perform a wide range of physiological roles, including brain homeostasis maintenance, control of neural connectivity, network function modulation, as well as functional and morphological plasticity regulation in health and disease.
View Article and Find Full Text PDFBiomed Pharmacother
January 2025
Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurochemistry, 12 Smetna Str., Krakow 31-343, Poland. Electronic address:
Neuropathic pain is a disorder affecting the somatosensory nervous system. However, this condition is also characterized by significant neuroinflammation, primarily involving CNS-resident non-neuronal cells. A promising target for developing new analgesics is histamine H receptor (HR); thus, we aimed to determine the influence of a novel HR antagonist/inverse agonist, E-98 (1-(7-(4-chlorophenoxy)heptyl)-3-methylpiperidine), on pain symptoms and glia activation in model of neuropathic pain in male mice (chronic constriction injury to the sciatic nerve).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!