A portable-type surface plasmon resonance (SPR) sensor, composed from a new optical system for multi-sensing, has been developed to apply to environment analysis, clinical diagnosis etc., where many samples are desired to be analyzed at high throughput. The optical system of the sensor consists of a light-emitting diode, a pair of cylindrical lenses, a pair of collimator lenses, a correction lens, a prism, a polarizer and a linear CCD sensor with 2048 pixels. Reflected light from a sensor chip of the width of 6 mm at a certain incident angle was detected by ca. 618 pixels of the linear CCD sensor as an SPR sensor signal. An SPR sensor signal at a specified incident angle is controllable for optimization by adjusting the position of the CCD sensor. A sensor chip having a 30-stripe linear pattern (100 μm width/stripe) was prepared. The spatial resolution as well as the performance of the sensor were evaluated by using sucrose solutions. As a result, the acquisition of SPR sensor signals from 30 sensing points was successfully achieved with a spatial resolution of 100 μm (distance between 2 sensing points). A lower detection limit of ca. 3.2 - 5.5 × 10(-5) RIU with a standard deviation of ±4.5% was obtained by averaging the signals from 6 - 7 pixels of the CCD sensor per one sensing stripe.

Download full-text PDF

Source
http://dx.doi.org/10.2116/analsci.32.673DOI Listing

Publication Analysis

Top Keywords

ccd sensor
20
spr sensor
16
sensor
14
linear ccd
12
surface plasmon
8
plasmon resonance
8
optical system
8
sensor chip
8
incident angle
8
sensor signal
8

Similar Publications

For change detection in synthetic aperture radar (SAR) imagery, amplitude change detection (ACD) and coherent change detection (CCD) are widely employed. However, time-series SAR data often contain noise and variability introduced by system and environmental factors, requiring mitigation. Additionally, the stability of SAR signals is preserved when calibration accounts for temporal and environmental variations.

View Article and Find Full Text PDF

To improve the performance of Radio Frequency Identification (RFID) multi-label systems, the multi-label network structure needs to be quickly located and optimized. A multi-label location measurement method based on the NLM-Harris algorithm is proposed in this paper. Firstly, multi-label geometric distribution images are obtained through a label image acquisition system of a multi-label semi-physical simulation platform with two vertical Charge-Coupled Device (CCD) cameras, and Gaussian noise is added to the image to simulate thermoelectric interference.

View Article and Find Full Text PDF

This article delineates the enhancement of an autonomous navigation and obstacle avoidance system for a quadruped robot dog. Part one of this paper presents the integration of a sophisticated multi-level dynamic control framework, utilizing Model Predictive Control (MPC) and Whole-Body Control (WBC) from MIT Cheetah. The system employs an Intel RealSense D435i depth camera for depth vision-based navigation, which enables high-fidelity 3D environmental mapping and real-time path planning.

View Article and Find Full Text PDF

FPGA Readout for Frequency-Multiplexed Array of Micromechanical Resonators for Sub-Terahertz Imaging.

Sensors (Basel)

November 2024

Elettra-Sincrotrone Trieste S.C.p.A. Science Park, Strada Statale 14, km 163.5, 34149 Basovizza, Italy.

Field programmable gate arrays (FPGAs) have not only enhanced traditional sensing methods, such as pixel detection (CCD and CMOS), but also enabled the development of innovative approaches with significant potential for particle detection. This is particularly relevant in terahertz (THz) ray detection, where microbolometer-based focal plane arrays (FPAs) using microelectromechanical (MEMS) resonators are among the most promising solutions. Designing high-performance, high-pixel-density sensors is challenging without FPGAs, which are crucial for deterministic parallel processing, fast ADC/DAC control, and handling large data throughput.

View Article and Find Full Text PDF
Article Synopsis
  • - LWIR cameras are vital for various applications but require advanced lens designs that are broad in bandwidth, lightweight, compact, and cost-effective due to high-performance demands.
  • - The proposed method utilizes inverse design for LWIR hybrid metalenses, focusing on correcting aberrations while achieving a large field of view (30°) and a broad bandwidth (8 to 14 μm) for thermal imaging.
  • - This innovative design significantly improves upon existing technologies by offering enhanced field of view, efficiency, and a remarkably compact optical path length of just 13.6 mm, enabling more effective imaging and sensing applications.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!