Background: Periodontitis is the inflammation of the periodontal supporting tissues. The response of periodontal tissues to local bacteria leads to bone resorption and destruction of periodontal junction. Given the possible association between periodontitis and low bone mineral density, the aim of present study was to find if measurement of salivary biomarkers as a less invasive method, can provide an appropriate screening method for assessment of bone mineral density in patients with chronic periodontitis?
Methods: A case-control study was conducted on 53 people, including 28 patients with severe chronic periodontitis and 25 healthy people between April 2014 to March 2015 in Zahedan (southeast of Iran). Following Periodontal examination, salivary samples were collected, and the concentration of salivary calcium and phosphate were measured and reported as mg/dl. Bone mineral density of participants was measured using dual energy x-ray absorptiometry and reported as gr/cm2.
Results: No significant association was found between concentrations of salivary calcium and phosphate levels with bone mineral density in either healthy people or in patients with severe chronic periodontitis, despite a significant bone density reduction (in the femur neck and lumbar spine L2-L4) in the periodontitis group compared to healthy people (P=0.006, and P=0.009 respectively).
Conclusion: Concentration of salivary calcium and phosphate do not appear to be good indicators of bone mineral density. Further prospective studies with larger sample size are recommended.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.5539/gjhs.v8n10p282 | DOI Listing |
Clin Oral Investig
January 2025
Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China.
Objectives: This paper aims to review the immunopathogenesis of Diabetes-associated periodontitis (DPD) and to propose a description of the research progress of drugs with potential clinical value from an immunotherapeutic perspective.
Materials And Methods: A comprehensive literature search was conducted in PubMed, MEDLINE, Embase, Web of Science, Scopus and the Cochrane Library. Inclusion criteria were studies on the association between diabetes and periodontitis using the Boolean operator "AND" for association between diabetes and periodontitis, with no time or language restrictions.
Calcif Tissue Int
January 2025
National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD, 20892, USA.
Tumor-induced osteomalacia (TIO) is a rare paraneoplastic syndrome caused by hypersecretion of fibroblast growth factor 23 (FGF23) by typically benign phosphaturic mesenchymal tumors (PMTs). FGF23 excess causes chronic hypophosphatemia through renal phosphate losses and decreased production of 1,25-dihydroxy-vitamin-D. TIO presents with symptoms of chronic hypophosphatemia including fatigue, bone pain, weakness, and fractures.
View Article and Find Full Text PDFBrain Res
January 2025
Department of Neurosurgery, Division of Functional and Integrative Medicine, Department of Neurosurgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan.
Laser speckle flowmetry (LSF) is a noninvasive tool for cerebral blood flow (CBF) measurement via a cranial bone window. LSF is influenced by various factors including the extent of removal of bone and dura mater and tissue wetness in the bone window. In this study, we aimed to characterize the effect of these conditions on LSF signals and identify optimal measurement conditions for CBF LSF measurements in rats.
View Article and Find Full Text PDFBiomater Adv
January 2025
Department of Orthopaedic Surgery, National University of Singapore, NUHS Tower Block, Level 11, 1E Kent Ridge Road, Singapore 119228, Singapore.
Osteoporosis, characterized by reduced bone mineral density and increased fracture risk, poses a significant health challenge, particularly for aging populations. Systemic treatments often lead to adverse side effects, emphasizing the need for localized solutions. This study introduces a 3D-printed polycaprolactone (PCL) scaffold embedded with strontium-substituted mesoporous bioactive glass nanoparticles (Sr-MBGNPs) and icariin (ICN) for the targeted regeneration of osteoporotic bone.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!