In recent years it has been shown that the therapeutic benefits of human mesenchymal stem/stromal cells (hMSCs) in the Central Nervous System (CNS) are mainly attributed to their secretome. The implementation of computer-controlled suspension bioreactors has shown to be a viable route for the expansion of these cells to large numbers. As hMSCs actively respond to their culture environment, there is the hypothesis that one can modulate its secretome through their use. Herein, we present data indicating that the use of computer-controlled suspension bioreactors enhanced the neuroregulatory profile of hMSCs secretome. Indeed, higher levels of in vitro neuronal differentiation and NOTCH1 expression in human neural progenitor cells (hNPCs) were observed when these cells were incubated with the secretome of dynamically cultured hMSCs. A similar trend was also observed in the hippocampal dentate gyrus (DG) of rat brains where, upon injection, an enhanced neuronal and astrocytic survival and differentiation, was observed. Proteomic analysis also revealed that the dynamic culturing of hMSCs increased the secretion of several neuroregulatory molecules and miRNAs present in hMSCs secretome. In summary, the appropriate use of dynamic culture conditions can represent an important asset for the development of future neuro-regenerative strategies involving the use of hMSCs secretome.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4908397PMC
http://dx.doi.org/10.1038/srep27791DOI Listing

Publication Analysis

Top Keywords

hmscs secretome
12
survival differentiation
8
computer-controlled suspension
8
suspension bioreactors
8
secretome
7
hmscs
7
modulation mesenchymal
4
mesenchymal stem
4
stem cell
4
cell secretome
4

Similar Publications

Conditioned medium of human umbilical cord-mesenchymal stem cells cultivated with human cord blood serum enhances stem cell stemness and secretome profiles.

Toxicol In Vitro

March 2025

Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima 30000, Thailand. Electronic address:

The proteins secreted by human umbilical cord mesenchymal stem cells (hUC-MSCs) may enhance tissue regeneration and wound healing. Traditional hUC-MSC cultures may not be enough since they undergo recurrent cellular senescence during large-scale production. This decreases the therapeutic ability of hUC-MSCs by altering genes and proteins that control stemness, proliferation, and protein release.

View Article and Find Full Text PDF

SLPI overexpression in hMSCs could be implicated in the HSC gene expression profile in AML.

Sci Rep

July 2024

Stem Cell Laboratory, Lab. de Células-Tronco (LCT) Centro, National Cancer Institute (INCA), Praça da Cruz Vermelha 23, 6° andar, Ala C, Rio de Janeiro, RJ, CEP: 20230-130, Brazil.

Acute myeloid leukaemia (AML) is a severe haematological neoplasm that originates from the transformation of haematopoietic stem cells (HSCs) into leukaemic stem cells (LSCs). The bone marrow (BM) microenvironment, particularly that of mesenchymal stromal cells (hMSCs), plays a crucial role in the maintenance of HSCs. In this context, we explored whether alterations in the secretome of hMSCs derived from AML patients (hMSC-AML) could impact HSC gene expression.

View Article and Find Full Text PDF

Noninvasive and Continuous Monitoring of On-Chip Stem Cell Osteogenesis Using a Reusable Electrochemical Immunobiosensor.

ACS Sens

May 2024

Division of Engineering in Medicine, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Cambridge, Massachusetts 02139, United States.

Noninvasive monitoring of biofabricated tissues during the biomanufacturing process is needed to obtain reproducible, healthy, and functional tissues. Measuring the levels of biomarkers secreted from tissues is a promising strategy to understand the status of tissues during biofabrication. Continuous and real-time information from cultivated tissues enables users to achieve scalable manufacturing.

View Article and Find Full Text PDF

Human mesenchymal stromal cell (hMSC) manufacturing requires the production of large numbers of therapeutically potent cells. Licensing with soluble cytokines improves hMSC therapeutic potency by enhancing secretion of immunoactive factors but typically decreases proliferative ability. Soft hydrogels, however, have shown promise for boosting immunomodulatory potential, which may compensate for decreased proliferation.

View Article and Find Full Text PDF

<b>Background and Objective:</b> Liver fibrosis (LF) is a most common pathological process characterized by the activation of hepatocytes leading to the accumulation of extracellular matrix (ECM). Hypoxia precondition treated in MSCs (H-MSCs) could enhance their immunomodulatory and regeneration capability, through expressing robust anti-inflammatory cytokines and growth factors, known as H-MSCs secretome (SH-MSCs) that are critical for the improvement of liver fibrosis. However, the study regarding the efficacy and mechanism of action of SH-MSCs in ameliorating liver fibrosis is still inconclusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!