Plum pox virus capsid protein suppresses plant pathogen-associated molecular pattern (PAMP)-triggered immunity.

Mol Plant Pathol

INRA, UMR 1332 BFP, CS 20032, Villenave d'Ornon cedex, 33882, France.

Published: August 2017

AI Article Synopsis

  • The immune system of plants uses PAMP-triggered immunity (PTI) to defend against pathogens, but successful pathogens can suppress this defense.
  • Recent findings show that plant PTI genes are influenced by viral infections, specifically contributing to resistance against the Plum pox virus (PPV).
  • The study reveals that PPV can inhibit critical early PTI responses, utilizing its capsid protein to effectively evade plant defenses, thus showcasing a new tactic viruses use to bypass plant immunity.

Article Abstract

The perception of pathogen-associated molecular patterns (PAMPs) by immune receptors launches defence mechanisms referred to as PAMP-triggered immunity (PTI). Successful pathogens must suppress PTI pathways via the action of effectors to efficiently colonize their hosts. So far, plant PTI has been reported to be active against most classes of pathogens, except viruses, although this defence layer has been hypothesized recently as an active part of antiviral immunity which needs to be suppressed by viruses for infection success. Here, we report that Arabidopsis PTI genes are regulated upon infection by viruses and contribute to plant resistance to Plum pox virus (PPV). Our experiments further show that PPV suppresses two early PTI responses, the oxidative burst and marker gene expression, during Arabidopsis infection. In planta expression of PPV capsid protein (CP) was found to strongly impair these responses in Nicotiana benthamiana and Arabidopsis, revealing its PTI suppressor activity. In summary, we provide the first clear evidence that plant viruses acquired the ability to suppress PTI mechanisms via the action of effectors, highlighting a novel strategy employed by viruses to escape plant defences.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6638313PMC
http://dx.doi.org/10.1111/mpp.12447DOI Listing

Publication Analysis

Top Keywords

plum pox
8
pox virus
8
capsid protein
8
pathogen-associated molecular
8
pamp-triggered immunity
8
suppress pti
8
action effectors
8
pti
7
plant
5
viruses
5

Similar Publications

Sharka disease, caused by the plum pox virus (PPV), negatively impacts stone fruit production, resulting in economic losses. It has been demonstrated that grafting the almond ( (Miller) D.A.

View Article and Find Full Text PDF

Plant viruses have evolved different viral suppressors of RNA silencing (VSRs) to counteract RNA silencing which is a small RNA-mediated sequence-specific RNA degradation mechanism. Previous studies have already shown that the coat protein (CP) of cucumber mosaic virus (CMV) reduced RNA silencing suppression (RSS) activity of the VSR of CMV, the 2b protein. To demonstrate the universality of this CP-VSR interference, our study included three different viruses: CMV and peanut stunt virus (PSV) from the Bromoviridae, and plum pox virus (PPV) from the Potyviridae family.

View Article and Find Full Text PDF

Plum pox virus (PPV) is the etiological agent of sharka, the most important viral disease of stone fruit worldwide. In this study, a one-step reverse transcription real-time PCR test (RT-qPCR) was modified and translated as a one-step RT-droplet digital PCR (RT-ddPCR) for sensitive, direct, and accurate detection and quantification of PPV. The modified RT-qPCR and RT-ddPCR PPV detection tests were validated using both plant purified total RNA (TRNA) and crude extract as templates.

View Article and Find Full Text PDF

Nanobiotechnology for efficient plum pox virus elimination from apricot plants.

Plant Sci

December 2024

Group of Fruit Tree Biotechnology, Department of Plant Breeding, CEBAS-CSIC, Campus de Espinardo, Edif. 25, Murcia 30100, Spain. Electronic address:

Metallic nanoparticles have antimicrobial, virucidal, and anticancer activities and have been widely applied in medicine. In plants, silver nanoparticles have been used as preventive treatments in the greenhouse to reduce viral titers and symptoms. This work investigates the effect of Argovit™ AgNP formulation on apricot plants infected with Plum pox virus or with Hop stunt viroid.

View Article and Find Full Text PDF

Use of Bacterial Toxin-Antitoxin Systems as Biotechnological Tools in Plants.

Int J Mol Sci

September 2024

Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin 3, 28049 Madrid, Spain.

Toxin-antitoxin (TA) systems in bacteria are key regulators of the cell cycle and can activate a death response under stress conditions. Like other bacterial elements, TA modules have been widely exploited for biotechnological purposes in diverse applications, such as molecular cloning and anti-cancer therapies. However, their use in plants has been limited, leaving room for the development of new approaches.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!