Background: Cine Displacement Encoding with Stimulated Echoes (DENSE) provides accurate quantitative imaging of cardiac mechanics with rapid displacement and strain analysis; however, image acquisition times are relatively long. Compressed sensing (CS) with parallel imaging (PI) can generally provide high-quality images recovered from data sampled below the Nyquist rate. The purposes of the present study were to develop CS-PI-accelerated acquisition and reconstruction methods for cine DENSE, to assess their accuracy for cardiac imaging using retrospective undersampling, and to demonstrate their feasibility for prospectively-accelerated 2D cine DENSE imaging in a single breathhold.

Methods: An accelerated cine DENSE sequence with variable-density spiral k-space sampling and golden angle rotations through time was implemented. A CS method, Block LOw-rank Sparsity with Motion-guidance (BLOSM), was combined with sensitivity encoding (SENSE) for the reconstruction of under-sampled multi-coil spiral data. Seven healthy volunteers and 7 patients underwent 2D cine DENSE imaging with fully-sampled acquisitions (14-26 heartbeats in duration) and with prospectively rate-2 and rate-4 accelerated acquisitions (14 and 8 heartbeats in duration). Retrospectively- and prospectively-accelerated data were reconstructed using BLOSM-SENSE and SENSE. Image quality of retrospectively-undersampled data was quantified using the relative root mean square error (rRMSE). Myocardial displacement and circumferential strain were computed for functional assessment, and linear correlation and Bland-Altman analyses were used to compare accelerated acquisitions to fully-sampled reference datasets.

Results: For retrospectively-undersampled data, BLOSM-SENSE provided similar or lower rRMSE at rate-2 and lower rRMSE at rate-4 acceleration compared to SENSE (p < 0.05, ANOVA). Similarly, for retrospective undersampling, BLOSM-SENSE provided similar or better correlation with reference displacement and strain data at rate-2 and better correlation at rate-4 acceleration compared to SENSE. Bland-Altman analyses showed similar or better agreement for displacement and strain data at rate-2 and better agreement at rate-4 using BLOSM-SENSE compared to SENSE for retrospectively-undersampled data. Rate-2 and rate-4 prospectively-accelerated cine DENSE provided good image quality and expected values of displacement and strain.

Conclusions: BLOSM-SENSE-accelerated spiral cine DENSE imaging with 2D displacement encoding can be acquired in a single breathhold of 8-14 heartbeats with high image quality and accurate assessment of myocardial displacement and circumferential strain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4906684PMC
http://dx.doi.org/10.1186/s12968-016-0253-2DOI Listing

Publication Analysis

Top Keywords

cine dense
20
compressed sensing
8
sensing parallel
8
parallel imaging
8
dense imaging
8
heartbeats duration
8
accelerated acquisitions
8
retrospectively-undersampled data
8
lower rrmse
8
cine
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!