The aim of the present study was to clarify if flow-cytometric sex-sorting of bovine sperm affected in vitro blastocyst production in different bulls, either in terms of its ability to fertilize the oocyte or by interfering with post-fertilization embryo development. We performed in vitro fertilization (IVF) using both commercially available frozen-thawed X-sorted and non-sorted sperm of 4 Holstein bulls at 3 concentrations (1 × 10, 2 × 10, and 5 × 10 sperm/ml). When fertilization rates were compared, a variation in fertilization rates among different sperm concentrations was detected in 2 bulls, with similar results for X-sorted and non-sorted sperm. However, we found no evidence that the fertilization rates were affected by the sorting process. To investigate effects on embryo development, we determined the optimum sperm concentration for IVF in each bull, which resulted in similar fertilization rates among bulls. We next performed IVF using both X-sorted and non-sorted sperm of the 4 bulls at their optimum sperm concentration and compared in vitro embryo development. Cleavage rates with X-sorted sperm were similar to their non-sorted counterparts. However, significantly reduced blastocyst development was associated with the use of X-sorted sperm in one bull, whereas in the other three bulls, blastocyst development after IVF with X-sorted and non-sorted sperm was similar. In conclusion, in our system, X-sorting affects in vitro blastocyst production by reducing the developmental competence of fertilized oocytes rather than affecting the fertilization ability of the sperm. However, the occurrence of this phenomenon varies among bulls.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5081731 | PMC |
http://dx.doi.org/10.1262/jrd.2016-032 | DOI Listing |
J Reprod Dev
October 2016
Animal Breeding and Reproduction Research Division, NARO Institute of Livestock and Grassland Science, Ibaraki 305-0901, Japan.
The aim of the present study was to clarify if flow-cytometric sex-sorting of bovine sperm affected in vitro blastocyst production in different bulls, either in terms of its ability to fertilize the oocyte or by interfering with post-fertilization embryo development. We performed in vitro fertilization (IVF) using both commercially available frozen-thawed X-sorted and non-sorted sperm of 4 Holstein bulls at 3 concentrations (1 × 10, 2 × 10, and 5 × 10 sperm/ml). When fertilization rates were compared, a variation in fertilization rates among different sperm concentrations was detected in 2 bulls, with similar results for X-sorted and non-sorted sperm.
View Article and Find Full Text PDFAnim Reprod Sci
March 2010
College of Animal Science and Technology, Tarim University, Alar, Xinjiang 843300, China.
The purpose of this study was to determine a practical method in Wapiti (Cervus elaphus) of using predetermined sexed Sika (Cervus nippon) semen. Semen was collected by electro-ejaculation from one stag of proven fertility and transported to the laboratory where it was retained as unsorted (control) or was separated into X- and Y-chromosome-bearing sperm using a modified high-speed cell sorter. Wapiti hinds (n=81) were inseminated into the uterus by rectum manipulation with 1 x 10(6) (X1 and Y1 group, respectively) or 2 x 10(6) (X2 and Y2 group, respectively) of sorted frozen-thawed and 1 x 10(7) non-sorted frozen-thawed (a commercial dose control) Sika motile sperm 60-66h after removal of intra-vaginal progesterone-impregnated CIDR devices and administration of 700IU of PMSG at the time of CIDR removal.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!