Many of the three-dimensional photonic crystals occurring in the scales of insects have bicontinuous cubic structures. Their optical properties have been studied extensively, however little is known about their mechanical properties and their optical response under deformation. We demonstrated a mechanochromic effect by deforming the scales of a weevil and calculated the elastic, optical and mechanochromic (assuming homogeneous deformation) properties of the three types of bicontinuous cubic structures occurring in nature: P-structure (primitive), G-structure (gyroid) and D-structure (diamond). The results show that all investigated properties of these three structure types strongly depend on their geometry, structural parameters such as volume fractions of the two constituting phases and the directions of the incident light or applied stress, respectively. Interestingly, the mechanochromic simulation results predict that these structures may show blue-shift or even red-shift under compression along certain directions. Our results provide design guidelines for mechanochromic sensing materials operating in the elastic regime, including parameters such as sensitivity and direction of spectral shift.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1748-3190/11/4/045001 | DOI Listing |
Molecules
November 2024
Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada.
This study explores the liquid crystalline properties of novel amphiphilic β-cyclodextrin derivatives functionalized with seven oligoethylene glycol chains at the primary face, terminated with either an O-methyl or an O-cyanoethyl group, and fourteen hydrophobic aliphatic chains (elaidic or oleic acids) at the secondary face. These derivatives were designed to study the impact of chain conformation and terminal group polarity on their mesomorphic behavior. Thermal, microscopic, and X-ray diffraction studies revealed that the elaidic derivatives form columnar hexagonal mesophases, with the O-cyanoethyl derivative undergoing a slow, temperature-dependent transition to a bicontinuous cubic phase.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark; Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville 3052, VIC Australia. Electronic address:
Hypothesis: Low-frequency Raman (LFR) spectroscopy is proposed as a novel non-destructive methodology to probe pH-related phase transitions in self-assembled lipid particles. In this case, dispersed lipid mesophases were composed of ionisable oleic acid (OA) or nicergoline (NG) in monoolein (MO). The sensitivity of LFR spectroscopy to low-energy intermolecular vibrations was hypothesised to be due to structural transformation in ionisable dispersed mesophases upon changes in pH.
View Article and Find Full Text PDFFood Chem
February 2025
Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark; Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria 3052, Australia. Electronic address:
In this study, a static in-vitro digestion model was coupled with synchrotron small-angle X-ray scattering (SAXS) to compare the lipid self-assembly behaviour of plant-based drinks and bovine milk during digestion. The diffraction profiles were combined with principal component analysis (PCA) of the fatty acid (FA) composition during digestion. Half of the plant-based drinks were found to form an inverse micellar cubic phase which is substantially different from the inverse hexagonal and bicontinuous cubic phases determined in bovine milk during digestion.
View Article and Find Full Text PDFMacromol Rapid Commun
November 2024
Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan.
Surface proton hopping conduction (SPHC) mechanisms is an important proton conduction mechanism in conventional polymer electrolytes, along with the Grotthuss and vehicle mechanisms. Due to the small diffusion coefficient of protons in the SPHC mechanism, few studies have focused on the SPHC mechanism. Recently, it has been found that a dense alignment of SO groups significantly lowers the activation energy in the SPHC mechanism, enabling fast proton conduction.
View Article and Find Full Text PDFInt J Pharm
December 2024
Department of Pharmaceutics, Faculty of Pharmacy, Port Said University, Port Said 42515, Egypt. Electronic address:
The clinical implication of clarithromycin (CLT) is compromised owing to its poor solubility and, subsequently, bioavailability, unpalatable taste, rapid metabolism, short half-life, frequent dosing, and adverse effects. The present investigation provides an innovative sustained-release oral drug delivery strategy that tackles these challenges. Accordingly, CLT was loaded into a cubosome, a vesicular system with a bicontinuous cubic structure that promotes solubility and bioavailability, provides a sustained release system combating short half-life and adverse effects, masks unpleasant taste, and protects the drug from destruction in gastrointestinal tract (GIT).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!