Despite the advantages of liposomal drug delivery, the bioavailability of the chemotherapeutic drugs to tumor cells is limited by their slow release from nanocarriers and low drug permeability across cell membranes. Drug encapsulation into stealth thermosensitive liposomes can improve drug delivery to tumors by combining efficient accumulation at tumors and the active release of the payload following remote heat triggering. Short-chain sphingolipids are known to enhance cellular uptake of amphiphilic drugs. We hypothesized that short-chain sphingolipids could be utilized to further improve intracellular drug delivery from a thermoresponsive formulation by enhancing the cell membrane passage of released drug. The following two strategies were investigated: (1) co-delivery of C8-glucosylceramide and doxorubicin within the thermosensitive liposomes and (2) pretreatment with glucosylceramide-enriched drug-free liposomes and subsequent treatment with doxorubicin loaded thermosensitive liposomes. Liposomes were prepared and extensively characterized. Drug uptake, cell cytotoxicity and live cell imaging were performed under normothermic and hyperthermic conditions in melanoma cells. In these studies, hyperthermia improved drug delivery from doxorubicin loaded thermosensitive formulations. However, the results from cell experiments indicated that there was no additional benefit in the co-delivery strategy using doxorubicin loaded glucosylceramide-enriched thermosensitive liposomes. In contrast, cellular studies showed significantly higher doxorubicin internalization in the pretreatment strategy. One-hour exposure of the cells to C8-glucosylceramide before applying hyperthermia caused improved doxorubicin uptake and cytotoxicity as well as an almost instantaneous cellular entry of the doxorubicin released from thermosensitive liposomes. This novel, two-step drug delivery approach can be potentially beneficial for the intracellular delivery of cell impermeable chemotherapeutics.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jbn.2016.2199DOI Listing

Publication Analysis

Top Keywords

thermosensitive liposomes
24
drug delivery
24
short-chain sphingolipids
12
doxorubicin loaded
12
drug
10
liposomes
8
improved drug
8
tumor cells
8
loaded thermosensitive
8
thermosensitive
7

Similar Publications

Current analgesics on the market exhibit a short duration of action and induce the production of inflammatory factors in tissues damaged by surgical procedures. Inflammatory factor production can create acidic environments, limiting drug delivery. In this study, we developed a novel injectable formulation comprising bupivacaine multivesicular liposomes of high osmotic pressure (H-MVL) and meloxicam nanocrystals (MLX) in a thermosensitive gel (H-MVL/MLX@GEL) adapted to the microenvironment for long-term postoperative analgesia.

View Article and Find Full Text PDF

Magnetic nanoparticles (MNPs) used for magnetic hyperthermia can not only damage tumor cells after elevating to a specific temperature but also provide the temperature required for thermosensitive liposomes (TSL) to release doxorubicin (DOX). MNPs injected into tumor will generate heat under an alternating magnetic field, so the MNPs distribution can determine temperature distribution and further affect the DOX concentration used for tumor therapy. This study proposes an asynchronous injection strategy for this combination therapy in order to improve the DOX concentration value for drug therapy, in which the MNPs are injected into tumor after a certain lagging of TSL injection in order to increase the TSL concentration inside tumor.

View Article and Find Full Text PDF

Thermosensitive liposome-encapsulated gold nanocages for photothermal-modulated drug release and synergistic photothermal therapy.

J Mater Chem B

January 2025

College of Chemistry and Materials Science, Chemical Biology Key Laboratory of Hebei Province, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding, 071002, P. R. China.

Delivery nanosystems have been widely developed to improve the efficacy of chemotherapy. However, their performance regarding the non-specific leakage of drugs remained unsatisfactory. Herein, gold nanocages (AuNCs) were used as carriers and thermo-sensitive liposome (TSL) as a protective shell to design a camptothecin (CPT)-loaded delivery nanosystem (AuNCs/CPT@TSL) for photothermal-modulated drug release.

View Article and Find Full Text PDF

Novel thermosensitive small multilamellar lipid nanoparticles with promising release characteristics made by dual centrifugation.

Eur J Pharm Sci

December 2024

Institute of Pharmaceutical Sciences, University of Freiburg, 79104 Freiburg im Breisgau, Germany; Andreas Hettich GmbH, 78532 Tuttlingen, Germany. Electronic address:

Thermosensitive liposomes (TSLs) have great potential for the selective delivery of cytostatic drugs to the tumor site with greatly reduced side effects. Here we report the discovery and characterization of new thermosensitive small multilamellar lipid nanoparticles (tSMLPs) with unusually high temperature selectivity. Furthermore, the temperature-dependent release of the fluorescent marker calcein from tSMLPs is enhanced by human serum albumin.

View Article and Find Full Text PDF

Thermosensitive, injectable, antibacterial glabridin liposome/chitosan dual network hydrogel for diabetic wound healing.

Int J Biol Macromol

December 2024

School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; Department of Traditional Chinese Medicine, Institute of Guangdong Geriatric, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China.

Thermosensitive hydrogels show great potential in healing diabetic wounds, but they are still challenged by the long healing time, risk of infectivity, and accumulation of melanin. Herein, a dual network hydrogel is designed, which consists of chlorogenic acid (CA) modified chitosan (CS) (CA@CS), poly(N-isopropylacrylamide) (PNIPAm), and glabridin liposomes (GL). The gelation transition temperature of the hydrogel is 32-34 °C, which thus endows it with superior injectability at ambient temperature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!