The toxicity of polymeric biodegradable nanoparticles was evaluated on a co-culture made from direct contact of human lung alveolar epithelial cells (A459) and macrophages (differentiated THP-1 monocytes). The co-culture was characterized by its phenotype and by confocal laser scanning microscopy. Cytokine secretion induced by lipopolysaccharide was synergistically increased in the co-culture confirming cell-cell interactions. Poly(lactide-co-glycolide) (PLGA)-based nanoparticles of 200 nm were prepared in presence of hydrophilic polymers commonly used as stabilizers [poly(vinyl alcohol), chitosan and poloxamer 188] through their interaction with particle surface. Stabilizer-free PLGA nanoparticles and stabilizers alone were also evaluated as controls. Selective uptake kinetics of PLGA nanoparticles by cell subpopulations, as well as apoptosis/necrosis detection, was achieved using a specific label for each cell type, while cytokine secretions were quantified in culture supernatants. Both cell subpopulations took up PLGA nanoparticles with similar profiles, and induced only little cytotoxicity (mostly necrosis). A mild inflammatory response to stabilized nanoparticles was detected (compared to well-known inflammatory compounds), slightly higher than the one observed for stabilizer-free PLGA nanoparticles or stabilizing agents taken individually. These results demonstrate that although biodegradable nanoparticles can be considered as safe, they can internalize compounds such as the stabilizing agents which enhance their toxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jbn.2016.2126DOI Listing

Publication Analysis

Top Keywords

plga nanoparticles
16
epithelial cells
8
nanoparticles
8
biodegradable nanoparticles
8
stabilizer-free plga
8
cell subpopulations
8
stabilizing agents
8
surface-modified biodegradable
4
biodegradable nanoparticles'
4
nanoparticles' impact
4

Similar Publications

Disulfiram-Loaded PLGA nanoparticles modified with a Phenyl borate chitosan Conjugate enhance hepatic carcinoma treatment.

Int J Pharm

January 2025

Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006 China; Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, Guangdong Pharmaceutical University, Guangzhou 510006 China; Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006 China. Electronic address:

Disulfiram (DSF), which has been traditionally used to treat alcoholism, has been shown to inhibit tumor growth, indicating its potential as an anticancer agent. However, its development and application are hindered by its poor water solubility, instability in physiological environments, and low bioavailability. In this study, phenylboronic acid-chitosan (PBA-CS) grafts were synthesized using the carbodiimide method.

View Article and Find Full Text PDF

Bloodstream infection in neonates is a complicated disease and presents a major challenge both in diagnosis and in therapeutic intervention. The focus of the present study was to investigate the incidence, the species distribution and the risk factors associated with mortality of bloodstream infections in a neonatal intensive care unit (NICU) and evaluating the antifungal susceptibility of traditional antifungal drugs and three nanoparticle-based drug delivery systems based on nanoparticles. A total of 458 patients were evaluated, and 9.

View Article and Find Full Text PDF

Ficus Carica extract (FC) is a natural herb that has received a lot of interest in cancer treatment due to its potential anticancer activities against various malignancies. However, due to FC's low bioavailability and low solubility, its clinical use as an anti-cancer medicine is constrained. The current study aimed to prepare FC-loaded PLGA nanoparticles (NPs) for cancer treatment.

View Article and Find Full Text PDF

Copper sulfide nanoparticles (CuS NPs) have garnered significant attention in photothermal therapy (PTT) owing to their facile synthesis, biodegradability, stability, and excellent photothermal conversion efficiency. Nonetheless, their potential toxic effects have restricted their application. This research focuses on the encapsulation of CuS NPs with the biocompatible polymer poly(lactic-co-glycolic acid) (PLGA) to enhance their biocompatibility, thereby improving the efficacy and safety of PTT in the treatment of triple-negative breast cancer (TNBC).

View Article and Find Full Text PDF

An Integrating Microfluidic System for Concentration Gradient Generation of Exosomes and Exosome-Assisted Single-Cell-Derived Tumor-Sphere Formation.

ACS Sens

January 2025

School of Basic Medical Science, Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an 710021, China.

To enhance exploration on tumor stem-like cells (TSCs) without altering their cellular biological characteristics, researchers advocate for application of single-cell-derived tumor-spheres (STSs). TSCs are regulated by their surrounding microenvironment, making it crucial to simulate a tumor microenvironment to facilitate STS formation. Recently, exosomes that originated from the tumor microenvironment have emerged as a promising approach for mimicking the tumor microenvironment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!