Inelastic collapse of stochastic trajectories of a randomly accelerated particle moving in half-space z>0 has been discovered by McKean [J. Math. Kyoto Univ. 2, 227 (1963)] and then independently rediscovered by Cornell et al. [Phys. Rev. Lett. 81, 1142 (1998)PRLTAO0031-900710.1103/PhysRevLett.81.1142]. The essence of this phenomenon is that the particle arrives at the wall at z=0 with zero velocity after an infinite number of inelastic collisions if the restitution coefficient β of particle velocity is smaller than the critical value β_{c}=exp(-π/sqrt[3]). We demonstrate that inelastic collapse takes place also in a wide class of models with spatially inhomogeneous random forcing and, what is more, that the critical value β_{c} is universal. That class includes an important case of inertial particles in wall-bounded random flows. To establish how inelastic collapse influences the particle distribution, we derive the exact equilibrium probability density function ρ(z,v) for the particle position and velocity. The equilibrium distribution exists only at β<β_{c} and indicates that inelastic collapse does not necessarily imply near-wall localization.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.93.052206DOI Listing

Publication Analysis

Top Keywords

inelastic collapse
16
randomly accelerated
8
inelastic
5
particle
5
collapse near-wall
4
near-wall localization
4
localization randomly
4
accelerated particles
4
particles inelastic
4
collapse stochastic
4

Similar Publications

Study of the N2 vibrational relaxation behaviors via the CO rovibrational thermometry.

J Chem Phys

December 2024

Deep Space Exploration Laboratory/Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, People's Republic of China.

This paper performed a comprehensive study of the thermal nonequilibrium effects of CO/Ar mixtures with various degrees of N2 additions and probed the N2 relaxation behaviors via the CO rovibrational thermometry. The rovibrational temperature time histories of shock-heated CO/N2/Ar mixtures were measured via a laser-absorption technique, and the corresponding vibrational relaxation data were summarized at 1890-3490 K. The measured results were compared with predictions from the Schwartz-Slawsky-Herzfeld (SSH) formula and the state-to-state (StS) approach (treating CO and N2 as pseudo-species).

View Article and Find Full Text PDF

The seismic design of precast structures hinges on unique characteristics intrinsic to precast technology. Emphasis is placed on lightweight structural elements for efficient on-site assembly and cost reduction. This leads to increased slenderness in beams and columns compared to traditional cast-in-situ constructions, accentuating the role of second-order effects.

View Article and Find Full Text PDF

Since the advent of the Haber-Bosch process in 1910, the global demand for ammonia (NH) has surged, driven by its applications in agriculture, pharmaceuticals, and energy. Current methods of NH storage, including high-pressure storage and transportation, present significant challenges due to their corrosive and toxic nature. Consequently, research has turned towards metal-organic framework (MOF) materials as potential candidates for NH storage due to their potential high adsorption capacities and structural tunability.

View Article and Find Full Text PDF

Vibrational energy relaxation in shock-heated CO/N2/Ar mixtures.

J Chem Phys

June 2024

Deep Space Exploration Laboratory/Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, People's Republic of China.

Experimental and numerical studies were performed on the vibrational energy relaxation in shock-heated CO/N2/Ar mixtures. A laser absorption technique was applied to the time-dependent rovibrational temperature time-history measurements. The vibrational relaxation data of reflected-shock-heated CO were summarized at 1720-3230 K.

View Article and Find Full Text PDF

Experimental and numerical studies on the thermal nonequilibrium behaviors of CO with Ar, He, and H2.

J Chem Phys

December 2023

Deep Space Exploration Laboratory, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, People's Republic of China.

The time-dependent rotational and vibrational temperatures were measured to study the shock-heated thermal nonequilibrium behaviors of CO with Ar, He, and H2 as collision partners. Three interference-free transition lines in the fundamental vibrational band of CO were applied to the fast, in situ, and state-specific measurements. Vibrational relaxation times of CO were summarized over a temperature range of 1110-2820 K behind reflected shocks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!