Minority-spin dynamics in the nonhomogeneous Ising model: Diverging time scales and exponents.

Phys Rev E

Department of Physics, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700009, India.

Published: May 2016

We investigate the dynamical behavior of the Ising model under a zero-temperature quench with the initial fraction of up spins 0≤x≤1. In one dimension, the known results for persistence probability are verified; it shows algebraic decay for both up and down spins asymptotically with different exponents. It is found that the conventional finite-size scaling is valid here. In two dimensions, however, the persistence probabilities are no longer algebraic; in particular for x≤0.5, persistence for the up (minority) spins shows the behavior P_{min}(t)∼t^{-γ}exp[-(t/τ)^{δ}] with time t, while for the down (majority) spins, P_{maj}(t) approaches a finite value. We find that the timescale τ diverges as (x_{c}-x)^{-λ}, where x_{c}=0.5 and λ≃2.31. The exponent γ varies as θ_{2d}+c_{0}(x_{c}-x)^{β} where θ_{2d}≃0.215 is very close to the persistence exponent in two dimensions; β≃1. The results in two dimensions can be understood qualitatively by studying the exit probability, which for different system size is found to have the form E(x)=f[(x-x_{c}/x_{c})L^{1/ν}], with ν≈1.47. This result suggests that τ∼L^{z[over ̃]}, where z[over ̃]=λ/ν=1.57±0.11 is an exponent not explored earlier.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.93.052113DOI Listing

Publication Analysis

Top Keywords

ising model
8
minority-spin dynamics
4
dynamics nonhomogeneous
4
nonhomogeneous ising
4
model diverging
4
diverging time
4
time scales
4
scales exponents
4
exponents investigate
4
investigate dynamical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!