A General Method to Discover Epitopes from Sera.

PLoS One

Center for Innovations in Medicine, Biodesign Institute, Arizona State University, 1001 South McAllister Avenue, Tempe, Arizona 85287, United States of America.

Published: July 2017

Antigen-antibody complexes are central players in an effective immune response. However, finding those interactions relevant to a particular disease state can be arduous. Nonetheless many paths to discovery have been explored since deciphering these interactions can greatly facilitate the development of new diagnostics, therapeutics, and vaccines. In silico B cell epitope mapping approaches have been widely pursued, though success has not been consistent. Antibody mixtures in immune sera have been used as handles for biologically relevant antigens, but these and other experimental approaches have proven resource intensive and time consuming. In addition, these methods are often tailored to individual diseases or a specific proteome, rather than providing a universal platform. Most of these methods are not able to identify the specific antibody's epitopes from unknown antigens, such as un-annotated neo antigens in cancer. Alternatively, a peptide library comprised of sequences unrestricted by naturally-found protein space provides for a universal search for mimotopes of an antibody's epitope. Here we present the utility of such a non-natural random sequence library of 10,000 peptides physically addressed on a microarray for mimotope discovery without sequence information of the specific antigen. The peptide arrays were probed with serum from an antigen-immunized rabbit, or alternatively probed with serum pre-absorbed with the same immunizing antigen. With this positive and negative screening scheme, we identified the library-peptides as the mimotopes of the antigen. The unique library peptides were successfully used to isolate antigen-specific antibodies from complete immune serum. Sequence analysis of these peptides revealed the epitopes in the immunized antigen. We present this method as an inexpensive, efficient method for identifying mimotopes of any antibody's targets. These mimotopes should be useful in defining both components of the antigen-antibody complex.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4907474PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0157462PLOS

Publication Analysis

Top Keywords

mimotopes antibody's
8
probed serum
8
general method
4
method discover
4
discover epitopes
4
epitopes sera
4
sera antigen-antibody
4
antigen-antibody complexes
4
complexes central
4
central players
4

Similar Publications

Biologically-driven RAFT polymerization-amplified platform for electrochemical detection of antibody drugs.

Talanta

December 2024

Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China. Electronic address:

The individualized administration and pharmacokinetics profiling are integral to the safe use of antibody drugs in immunotherapy. Here, we propose an electrochemical platform for the highly sensitive and selective detection of antibody drugs, taking advantage of the affinity capture by the peptide mimotopes together with the signal amplification by the biologically-driven RAFT polymerization (BDRP). Briefly, the BDRP-based platform involves the capture of antibody drugs by peptide mimotopes, the labeling of multiple reversible addition-fragmentation chain-transfer (RAFT) agents to the glycan chains of antibody drugs, and the BDRP-enabled controlled recruitment of numerous redox labels.

View Article and Find Full Text PDF

Comparative study of trastuzumab modification analysis using mono/multi-epitope affinity technology with LC-QTOF-MS.

J Pharm Anal

November 2024

Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research of China, Jinan University, Guangzhou, 510632, China.

Dynamic tracking analysis of monoclonal antibodies (mAbs) biotransformation is crucial, as certain modifications could inactivate the protein and reduce drug efficacy. However, a particular challenge (i.e.

View Article and Find Full Text PDF

Leprosy is an infectious disease classified as Neglected Tropical Disease (NTD) by the World Health Organization (WHO). Its diagnosis is challenging, relying on clinical symptoms and invasive procedures. Delays can cause severe physical disability, including hand, foot, and eye impairments.

View Article and Find Full Text PDF

One-step ultra-rapid immunoassay of calcitonin gene-related peptide for migraine diagnosis.

Biosens Bioelectron

February 2025

Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, Republic of Korea. Electronic address:

Migraine is known to be caused by calcitonin gene-related peptide (CGRP), prompting the need for quantitative analysis of CGRP for the clinical treatment of monoclonal antibodies targeting CGRP. Since CGRP is cleaved by proteolytic enzymes post-blood collection, rapid analysis methods are required. In this study, a one-step immunoassay for CGRP was developed using chemically mimicking peptides (mimotopes) with an analysis time of 32 min.

View Article and Find Full Text PDF

Ochratoxin A (OTA) is a common food contaminant and poses a significant threat to human health, which requires rigorous monitoring. Mimotope peptides (MPs) are commonly used as non-toxic alternatives to toxic small molecules in eco-friendly immunoassays. Herein, with an anti-OTA nanobody as the target protein, cyclic 7-mer MPs of OTA were screened using phage display and immunomagnetic separation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!