Acquired brain injury may lead to cognitive, emotional and behavioural problems which often go unrecognised. Combined with the patient's lack of self-awareness this may impede social participation, in particular in returning to work. To stress the importance of diagnosing and treating such consequences, we present two patients. A 40-year-old man suffering from the invisible consequences of brain injury caused by several cerebral infarctions. He tried but failed several times to hold down a job before he was sent to a specialized vocational rehabilitation centre. A 28-year-old man with severe traumatic brain injury started vocational rehabilitation at an early stage. This resulted in a full return to work within six months of the trauma. The Dutch guideline on acquired brain injury and vocational participation aims to help professionals and patients in the vocational rehabilitation process. The guideline strongly recommends setting up an interdisciplinary team consisting of a rehabilitation physician, an occupational physician, and employer and employee.

Download full-text PDF

Source

Publication Analysis

Top Keywords

brain injury
20
acquired brain
12
vocational rehabilitation
12
invisible consequences
8
brain
5
injury
5
vocational
5
[return work
4
work acquired
4
injury invisible
4

Similar Publications

Testing an Electronic Patient-Reported Outcome Platform in the Context of Traumatic Brain Injury: PRiORiTy Usability Study.

JMIR Form Res

January 2025

Centre for Patient Reported Outcomes Research, Institute of Applied Health Research, University of Birmingham, Birmingham, United Kingdom.

Background: Traumatic brain injury (TBI) is a significant public health issue and a leading cause of death and disability globally. Advances in clinical care have improved survival rates, leading to a growing population living with long-term effects of TBI, which can impact physical, cognitive, and emotional health. These effects often require continuous management and individualized care.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is identified as a risk factor for Parkinson's disease (PD), which is a neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra (SN). However, the precise mechanism by which chronic TBI initiates PD pathogenesis is not yet fully understood. In our present study, we assessed the chronic progression and pathogenesis of PD-like behavior at different intervals in TBI mice.

View Article and Find Full Text PDF

Microstructural white matter injury contributes to cognitive decline: Besides amyloid and tau.

J Prev Alzheimers Dis

February 2025

Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, PR China. Electronic address:

Background: Cognitive decline and the progression to Alzheimer's disease (AD) are traditionally associated with amyloid-beta (Aβ) and tau pathologies. This study aims to evaluate the relationships between microstructural white matter injury, cognitive decline and AD core biomarkers.

Methods: We conducted a longitudinal study of 566 participants using peak width of skeletonized mean diffusivity (PSMD) to quantify microstructural white matter injury.

View Article and Find Full Text PDF

Brain connectivity, neural networks, and resilience in aging and neurodegeneration.

Am J Pathol

January 2025

Center for the Neural Basis of Cognition; Department of Pathology; Department of Bioengineering; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA. Electronic address:

The importance of complex systems has become increasingly evident in recent years. The nervous system is one such example with neural networks sitting at the intersection of complex networks and biology. A particularly exciting feature is the resilience of complex systems.

View Article and Find Full Text PDF

An optogenetic mouse model of hindlimb spasticity after spinal cord injury.

Exp Neurol

January 2025

Brain and Mind Research Institute, Department of Biology, University of Ottawa, Ottawa, Ontario, Canada. Electronic address:

Spasticity is a common comorbidity of spinal cord injury (SCI), disrupting motor function and resulting in significant discomfort. While elements of post-SCI spasticity can be assessed using pre-clinical SCI models, the robust measurement of spasticity severity can be difficult due to its periodic and spontaneous appearance. Electrical stimulation of sensory afferents can elicit spasticity-associated motor responses, such as spasms; however, placing surface electrodes on the hindlimbs of awake animals can induce stress or encumbrance that could influence the expression of behaviour.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!