The Shu complex promotes error-free tolerance of alkylation-induced base excision repair products.

Nucleic Acids Res

University of Pittsburgh School of Medicine, Department of Microbiology and Molecular Genetics, 5117 Centre Avenue, Pittsburgh, PA 15213, USA

Published: September 2016

Here, we investigate the role of the budding yeast Shu complex in promoting homologous recombination (HR) upon replication fork damage. We recently found that the Shu complex stimulates Rad51 filament formation during HR through its physical interactions with Rad55-Rad57. Unlike other HR factors, Shu complex mutants are primarily sensitive to replicative stress caused by MMS and not to more direct DNA breaks. Here, we uncover a novel role for the Shu complex in the repair of specific MMS-induced DNA lesions and elucidate the interplay between HR and translesion DNA synthesis. We find that the Shu complex promotes high-fidelity bypass of MMS-induced alkylation damage, such as N3-methyladenine, as well as bypassing the abasic sites generated after Mag1 removes N3-methyladenine lesions. Furthermore, we find that the Shu complex responds to ssDNA breaks generated in cells lacking the abasic site endonucleases. At each lesion, the Shu complex promotes Rad51-dependent HR as the primary repair/tolerance mechanism over error-prone translesion DNA polymerases. Together, our work demonstrates that the Shu complex's promotion of Rad51 pre-synaptic filaments is critical for high-fidelity bypass of multiple replication-blocking lesion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5041462PMC
http://dx.doi.org/10.1093/nar/gkw535DOI Listing

Publication Analysis

Top Keywords

shu complex
32
complex promotes
12
shu
9
translesion dna
8
find shu
8
high-fidelity bypass
8
complex
7
promotes error-free
4
error-free tolerance
4
tolerance alkylation-induced
4

Similar Publications

Ligand fishing is a promising strategy for the screening of active ingredients from complex natural products. In this work, human tyrosinase (hTYR) was displayed on the surface of Chinese hamster ovary (CHO) cells for the first time; it was then used as bait to develop a new method for ligand fishing. The localization of hTYR on the CHO cell surface was verified by an enzyme activity test and fluorescence microscopy.

View Article and Find Full Text PDF

Vinculin haploinsufficiency impairs integrin-mediated costamere remodeling on stiffer microenvironments.

J Mol Cell Cardiol

January 2025

Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Institute of Engineering Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92093, USA. Electronic address:

Vinculin (VCL) is a key adapter protein located in force-bearing costamere complexes, which mechanically couples the sarcomere to the ECM. Heterozygous vinculin frameshift genetic variants can contribute to cardiomyopathy when external stress is applied, but the mechanosensitive pathways underpinning VCL haploinsufficiency remain elusive. Here, we show that in response to extracellular matrix stiffening, heterozygous loss of VCL disrupts force-mediated costamere protein recruitment, thereby impairing cardiomyocyte contractility and sarcomere organization.

View Article and Find Full Text PDF

New Productive Force: The Preliminary Report of First Craniofacial Surgical Robot IST Multicenter Clinical Trial in China.

J Craniofac Surg

January 2025

Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, School of Medicine, Shanghai Jiao Tong University.

Background: This paper presents the authors' team's research on a craniofacial surgical robot developed in China. Initiated in 2011 with government funding, the craniofacial surgical robot project was officially launched in Shanghai, developed jointly by the Ninth People's Hospital affiliated with Shanghai Jiao Tong University School of Medicine and the Shanghai Jiao Tong University medical-engineering team. Currently, based on multiple rounds of model surgeries, animal experiments, and clinical trials, our team is applying for approval as a Class III medical device from the National Medical Products Administration (NMPA).

View Article and Find Full Text PDF

Objective: To analyze the disease patterns and acupoint selection characteristics of acupuncture for epilepsy in ancient acupuncture texts, providing references and ideas for clinical acupuncture treatment of epilepsy.

Methods: Texts from the (5th edition) regarding acupuncture for epilepsy are reviewed. The frequency of acupoints, meridian association, distribution, specific points, corresponding epilepsy subtypes, and needling techniques are statistically analyzed.

View Article and Find Full Text PDF

Posttranscriptional Control of Neural Progenitors Temporal Dynamics During Neocortical Development by Syncrip.

Adv Sci (Weinh)

January 2025

State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Medical Primate Research Center, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.

The development of the mammalian neocortex is precisely regulated by temporal gene expression, yet the temporal regulatory mechanisms of cortical neurogenesis, particularly how radial glial cells (RGCs) sequentially generate deep to superficial neurons, remain unclear. Here, the hnRNP family member Syncrip (hnRNP Q) is identified as a key modulator of superficial neuronal differentiation in neocortical neurogenesis. Syncrip knockout in RGCs disrupts differentiation and abnormal neuronal localization, ultimately resulting in superficial cortical layer defects as well as learning and memory impairments in mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!