Objective: This study aimed to investigate the potential of Mg-based bioceramic scaffolds combined with human treated-dentin matrices (hTDMs) and dentinogenesis-related morphogens to promote odontogenic differentiation and dentin-like tissue formation by Dental Pulp Stem Cells-DPSCs.
Methods: DPSC cultures were established and characterized by flow cytometry. Experimental cavities were prepared inside crowns of extracted teeth and demineralized by EDTA (hTDMs). Zn-doped, Mg-based bioceramic scaffolds, synthesized by the sol-gel technique, were hosted inside the hTDMs. DPSCs were spotted inside the hTDMs/scaffold constructs with/without additional exposure to DMP-1 or BMP-2 (100ng/ml, 24h). Scanning Electron Microscopy-SEM, live/dead fluorescence staining and MTT assay were used to evaluate cell attachment and viability; Real time PCR for expression of osteo/odontogenic markers; Inductively Coupled Plasma-Atomic Emission Spectrometry-ICP/AES for scaffold elemental release analysis; ELISA for hTDM growth factor release analysis; SEM and X-ray Diffraction-XRD for structural/chemical characterization of the regenerated tissues.
Results: Scaffolds constantly released low concentrations of Mg(2+), Ca(2+), Zn(2+) and Si(4+), while hTDMs growth factors, like DMP-1, BMP-2 and TGFβ-1. hTDMs/scaffold constructs supported DPSC viability, inducing their rapid odontogenic shift, indicated by upregulation of DSPP, BMP-2, osteocalcin and osterix expression. Newly-formed Ca-P tissue overspread the scaffolds partially transforming into bioapatite. Exposure to DMP-1 or BMP-2 pronouncedly enhanced odontogenic differentiation phenomena.
Significance: This is the first study to validate that combining the bioactivity and ion releasing properties of bioceramic materials with growth factor release by treated natural dentin further supported by exogenous addition of key dentinogenesis-related morphogens (DMP-1, BMP-2) can be a promising strategy for targeted dentin regeneration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.dental.2016.05.013 | DOI Listing |
J Contemp Dent Pract
April 2024
Department of Oral Biology, Faculty of Dentistry, The British University in Egypt, El Shorouk, Egypt, Phone: +201229332616, e-mail:
Aims: This study aims to assess the synergistic effect of utilizing a bioceramic sealer, NeoPutty, with photobiomodulation (PBM) on dental pulp stem cells (DPSCs) for odontogenesis.
Materials And Methods: Dental pulp stem cells were collected from 10 premolars extracted from healthy individuals. Dental pulp stem cells were characterized using an inverted-phase microscope to detect cell shape and flow cytometry to detect stem cell-specific surface antigens.
JBMR Plus
May 2024
Indiana Center for Musculoskeletal Health, Indiana School of Medicine, Indianapolis, IN 46202, USA.
Targeting the gut-bone axis with probiotics and prebiotics is considered as a promising strategy to reduce the risk of osteoporosis. Gut-derived short chain fatty acids (SCFA) mediate the effects of probiotics on bone via Tregs, but it is not known whether prebiotics act through a similar mechanism. We investigated how 2 different prebiotics, tart cherry (TC) and fructooligosaccharide (FOS), affect bone, and whether Tregs are required for this response.
View Article and Find Full Text PDFActa Biomater
March 2023
Department of Prosthodontics, Tissue Engineering Core Unit, School of Dentistry, Aristotle University of Thessaloniki, Thessaloniki, Greece. Electronic address:
Hard dental tissue pathologies, such as caries, are conventionally managed through replacement by tooth-colored inert biomaterials. Tissue engineering provides novel treatment approaches to regenerate lost dental tissues based on bioactive materials and/or signaling molecules. While regeneration in the form of reparative dentin (osteo-dentin) is feasible, the recapitulation of the tubular microstructure of ortho-dentin and its special features is sidelined.
View Article and Find Full Text PDFPolymers (Basel)
August 2022
Department of Oral Biology and Occlusion, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand.
This study modified glass ionomer cement (GIC) by adding mimicked biological molecules to reduce cell death. GIC was modified to BIOGIC by adding chitosan and bovine serum albumin for enhancing protein release. The BIOGIC was supplemented with tricalcium phosphate (TCP) and recombinant translationally controlled tumor protein (TCTP) to improve its biological properties.
View Article and Find Full Text PDFClin Oral Investig
July 2022
Department of Advanced Oral Sciences and Therapeutics, Division of Endodontics, University of Maryland, Baltimore, MD, USA.
Objective: The study aims to evaluate the effect of bone morphogenetic protein-2 (BMP-2) and transforming growth factor-beta 1 (TGF-β1) co-stimulation on odontogenic differentiation of human dental pulp stem cells (hDPSCs).
Materials And Methods: The viability/proliferation of hDPSCs treated with BMP-2 (group B), TGF-β1 (group T), or BMP-2/TGF-β1 (group BT) were evaluated. The experiments on odontogenic differentiation were done for 14 days.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!