Biotechnology has transformed the potential for plants to be a manufacturing source of pharmaceutical compounds. Now, with transgenic and transient expression techniques, virtually any biologic, including vaccines and therapeutics, could be manufactured in plants. However, uncertainty over the regulatory path for such new pharmaceuticals has been a deterrent. Consideration has been given to using alternative regulatory paths, including those for nutraceuticals or cosmetic agents. This review will consider these possibilities, and discuss the difficulties in establishing regulatory guidelines for new pharmaceutical manufacturing technologies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5338133PMC
http://dx.doi.org/10.1111/bcp.13041DOI Listing

Publication Analysis

Top Keywords

recombinant biologic
4
biologic products
4
products versus
4
versus nutraceuticals
4
nutraceuticals plants
4
regulatory
4
plants regulatory
4
regulatory choice?
4
choice? biotechnology
4
biotechnology transformed
4

Similar Publications

Purpose: Although mechanical injury to the cornea (e.g. chronic eye rubbing) is a known risk factor for keratoconus progression, how it contributes to loss of corneal integrity is not known.

View Article and Find Full Text PDF

The LIM-domain-only protein LMO2 and its binding partner LDB1 are differentially required for class switch recombination.

Proc Natl Acad Sci U S A

January 2025

Department of Immunology and Microbiology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510000, China.

The LIM-domain-only protein LMO2 interacts with LDB1 in context-dependent multiprotein complexes and plays key roles in erythropoiesis and T cell leukemogenesis, but whether they have any roles in B cells is unclear. Through a CRISPR/Cas9-based loss-of-function screening, we identified LMO2 and LDB1 as factors for class switch recombination (CSR) in murine B cells. LMO2 contributes to CSR at least in part by promoting end joining of DNA double-strand breaks (DSBs) and inhibiting end resection.

View Article and Find Full Text PDF

Background/objectives: Photoimmunotherapy (PIT) is an innovative approach for the targeted therapy of cancer. In PIT, photosensitizer dyes are conjugated to tumor-specific antibodies for targeted delivery into cancer cells. Upon irradiation with visible light, the photosensitizer dye is activated and induces cancer-specific cell death.

View Article and Find Full Text PDF

Type 2 diabetes mellitus (T2DM) and obesity are critical global health issues with rising incidence rates. Glucagon-like peptide-1 (GLP-1) analogues have emerged as effective treatments due to their ability to regulate blood glucose levels and gastric emptying through central nervous signals involving hypothalamic receptors, such as leptin. To address the short plasma half-life of native GLP-1, a C-16 fatty acid was conjugated to lysine in the GLP-1 analogue sequence to enhance its longevity.

View Article and Find Full Text PDF

Harnessing cell aggregates for enhanced adeno-associated virus manufacturing: Cultivation strategies and scale-up considerations.

Biotechnol Prog

January 2025

AdBIOPRO, VINNOVA Competence Centre for Advanced Bioproduction by Continuous Processing, Royal Institute of Technology (KTH), Stockholm, Sweden.

The possibility to produce recombinant adeno-associated virus (rAAV) by adherent HEK293T cells was studied in a stirred tank bioreactor (STR) culture of cell aggregates. A proof-of-concept of rAAV production was successfully demonstrated in a process where single cells were first expanded, then cell aggregates were formed by dilution into a different medium 1 day before triple plasmid transfection was conducted. An alternative approach for the STR inoculation using a seed taken from a high cell density perfusion (HCDP) culture was also investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!