Mangroves are complex and dynamic ecosystems highly dependent on diverse microbial activities. In the last decades, these ecosystems have been exposed to and affected by diverse human activities, such as waste disposal and accidental oil spills. Complex microbial communities inhabiting the soil and sediment of mangroves comprise microorganisms that have developed mechanisms to adapt to organic and inorganic contaminants. The resistance of these microbes to contaminants is an attractive property and also the reason why soil and sediment living microorganisms and their enzymes have been considered promising for environmental detoxification. The aim of the present study was to identify active microbial genes in heavy metals, i.e., Cu, Zn, Cd, Pb and Hg, and antibiotic resistomes of polluted and pristine mangrove sediments through the comparative analysis of metatranscriptome data. The concentration of the heavy metals Zn, Cr, Pb, Cu, Ni, Cd, and Hg and abundance of genes and transcripts involved in resistance to toxic compounds (the cobalt-zinc-cadmium resistance protein complex; the cobalt-zinc-cadmium resistance protein CzcA and the cation efflux system protein CusA) have been closely associated with sites impacted with petroleum, sludge and other urban waste. The taxonomic profiling of metatranscriptome sequences suggests that members of Gammaproteobacteria and Deltaproteobacteria classes contribute to the detoxification of the polluted soil. Desulfobacterium autotrophicum was the most abundant microorganism in the oil-impacted site and displayed specific functions related to heavy metal resistance, potentially playing a key role in the successful persistence of the microbial community of this site.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2016.05.078 | DOI Listing |
Fish Physiol Biochem
January 2025
Department of Biological Sciences, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia.
High cadmium (Cd) concentrations pose a threat to aquatic life globally. This study examined the efficiency of adding purslane (Portulaca oleracea L.) leaf powder (PLP) to Oreochromis niloticus diets on Cd's negative effects.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, 395 007, India.
A fluorescence "turn-off-on" nanoprobe is designed by using europium-doped strontium molybdate perovskite quantum dots (Eu:SMO PQDs) for the sequential detection of hypoxanthine (Hx) and Fe. The Eu:SMO PQDs were prepared by the sol-gel method using Sr(NO), (NH)MoO.4HO, and Eu(OCOCH) as precursors.
View Article and Find Full Text PDFLuminescence
January 2025
Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, China.
Currently, the development of red Mn-activated fluoride luminescent materials attracts a lot of attention in optical thermometry sensors, solid lighting, display, and plant growth areas. Nevertheless, the thermal stability of Mn-activated fluoride luminescent materials is still a crucial issue. Herein, a new red RbNaVF:Mn luminescent material with outstanding thermal stability was successfully synthesized through the facial coprecipitation method.
View Article and Find Full Text PDFJ Cachexia Sarcopenia Muscle
February 2025
Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, USA.
Background: A decline in skeletal muscle mass and function known as skeletal muscle sarcopenia is an inevitable consequence of aging. Sarcopenia is a major cause of decreased muscle strength, physical frailty and increased muscle fatigability, contributing significantly to an increased risk of physical disability and functional dependence among the elderly. There remains a significant need for a novel therapy that can improve sarcopenia and related problems in aging.
View Article and Find Full Text PDFSensors (Basel)
December 2024
College of Engineering, Shanxi Agricultural University, Jinzhong 030801, China.
In order to solve the problems of high planting density, similar color, and serious occlusion between spikes in sorghum fields, such as difficult identification and detection of sorghum spikes, low accuracy and high false detection, and missed detection rates, this study proposes an improved sorghum spike detection method based on YOLOv8s. The method involves augmenting the information fusion capability of the YOLOv8 model's neck module by integrating the Gold feature pyramid module. Additionally, the SPPF module is refined with the LSKA attention mechanism to heighten focus on critical features.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!