AI Article Synopsis

  • The study focuses on Bradyrhizobium elkanii strains and their genetic abilities related to degrading herbicides 2,4-D and 2,4,5-T.
  • It identifies that while some strains possess the cadABCK genes necessary for degradation, they typically do not express them effectively unless induced by compounds like phenoxyacetic acid (PAA).
  • The research represents a significant finding by showing that common bacteria can have hidden potential for degrading harmful anthropogenic compounds, challenging assumptions about bacterial capabilities.

Article Abstract

Herbicides 2,4-dichlorophenoxyacetic acid (2,4-D)- and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T)-degrading Bradyrhizobium strains possess tfdAα and/or cadABC as degrading genes. It has been reported that root-nodulating bacteria belonging to Bradyrhizobium elkanii also have tfdAα and cadA like genes but lack the ability to degrade these herbicides and that the cadA genes in 2,4-D-degrading and non-degrading Bradyrhizobium are phylogenetically different. In this study, we identified cadRABCK in the genome of a type strain of soybean root-nodulating B. elkanii USDA94 and demonstrated that the strain could degrade the herbicides when cadABCK was forcibly expressed. cadABCK-cloned Escherichia coli also showed the degrading ability. Because co-spiked phenoxyacetic acid (PAA) could induce the degradation of 2,4-D in B. elkanii USDA94, the lack of degrading ability in this strain was supposed to be due to the low inducing potential of the herbicides for the degrading gene cluster. On the other hand, tfdAα from B. elkanii USDA94 showed little potential to degrade the herbicides, but it did for 4-chlorophenoxyacetic acid and PAA. The 2,4-D-degrading ability of the cad cluster and the inducing ability of PAA were confirmed by preparing cadA deletion mutant. This is the first study to demonstrate that the cad cluster in the typical root-nodulating bacterium indeed have the potential to degrade the herbicides, suggesting that degrading genes for anthropogenic compounds could be found in ordinary non-degrading bacteria.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.micres.2016.04.014DOI Listing

Publication Analysis

Top Keywords

elkanii usda94
16
degrade herbicides
16
24-dichlorophenoxyacetic acid
8
acid 24-d-
8
24-d- 245-trichlorophenoxyacetic
8
245-trichlorophenoxyacetic acid
8
acid 245-t-degrading
8
gene cluster
8
soybean root-nodulating
8
root-nodulating bacterium
8

Similar Publications

Bradyrhizobium sp. RD5-C2, isolated from soil that is not contaminated with 2,4-dichlorophenoxyacetic acid (2,4-D), degrades the herbicides 2,4-D and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T). It possesses tfdAα and cadA (designated as cadA1), which encode 2,4-D dioxygenase and the oxygenase large subunit, respectively.

View Article and Find Full Text PDF

Dual-luciferase assay and siRNA silencing for nodD1 to study the competitiveness of Bradyrhizobium diazoefficiens USDA110 in soybean nodulation.

Microbiol Res

August 2020

Department of Life Science Frontiers, Center for iPS Cell Research and Application, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan; Department of Agronomy and Horticultural Science, Graduate School of Agriculture, Kyoto University, Oiwake, Kitashirakawa, Sakyo-ku, Kyoto, 606-8502, Japan. Electronic address:

The symbiosis of soybean with Bradyrhizobium diazoefficiens USDA110, which always competes with other rhizobia in the field, is of great agronomic and environmental importance. Herein, a dual-luciferase reporter assay was utilized to monitor the dynamics of two dominant bradyrhizobia infecting roots of soybean. More explicitly, luciferase-tagged B.

View Article and Find Full Text PDF

Soybean plants establish symbiotic relationships with soil rhizobia which form nodules on the plant roots. Nodule formation starts when the plant roots exudate isoflavonoids that induce nod gene expression of a specific Bradyrhizobium. We examined the specific indigenous rhizobia that form nodules with the soybean cultivars Peking and Tamahomare in different soils.

View Article and Find Full Text PDF

Symbiotic effectiveness of rhizobitoxine (Rtx)-producing strains of Bradyrhizobium spp. in soybean (cultivar NRC-37/Ahilya-4) under limited soil moisture conditions was evaluated using phenomics tools such as infrared(IR) thermal and visible imaging. Red, green and blue (RGB) colour pixels were standardized to analyse a total of 1017 IR thermal and 692 visible images.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on Bradyrhizobium elkanii strains and their genetic abilities related to degrading herbicides 2,4-D and 2,4,5-T.
  • It identifies that while some strains possess the cadABCK genes necessary for degradation, they typically do not express them effectively unless induced by compounds like phenoxyacetic acid (PAA).
  • The research represents a significant finding by showing that common bacteria can have hidden potential for degrading harmful anthropogenic compounds, challenging assumptions about bacterial capabilities.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!