The molecular mechanisms and signalling cascades that trigger the induction of group I metabotropic glutamate receptor (GI-mGluR)-dependent long-term depression (LTD) have been the subject of intensive investigation for nearly two decades. The generation of genetically modified animals has played a crucial role in elucidating the involvement of key molecules regulating the induction and maintenance of mGluR-LTD. In this review we will discuss the requirement of the newly discovered MAPKAPK-2 (MK2) and MAPKAPK-3 (MK3) signalling cascade in regulating GI-mGluR-LTD. Recently, it has been shown that the absence of MK2 impaired the induction of GI-mGluR-dependent LTD, an effect that is caused by reduced internalization of AMPA receptors (AMPAR). As the MK2 cascade directly regulates tumour necrosis factor alpha (TNFα) production, this review will examine the evidence that the release of TNFα acts to regulate glutamate receptor expression and therefore may play a functional role in the impairment of GI-mGluRdependent LTD and the cognitive deficits observed in MK2/3 double knockout animals. The strong links of increased TNFα production in both aging and neurodegenerative disease could implicate the action of MK2 in these processes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4983755 | PMC |
http://dx.doi.org/10.2174/1570159x13666150624165939 | DOI Listing |
J Comp Neurol
January 2025
Graduate Program in Molecular and Systems Pharmacology, Emory University, Atlanta, Georgia, USA.
Glutamate delta receptor 1 (GluD1) is a unique synaptogenic molecule expressed at excitatory and inhibitory synapses. The lateral habenula (LHb), a subcortical structure that regulates negative reward prediction error and major monoaminergic systems, is enriched in GluD1. LHb dysfunction has been implicated in psychiatric disorders such as depression and schizophrenia, both of which are associated with GRID1, the gene that encodes GluD1.
View Article and Find Full Text PDFNeurotherapeutics
January 2025
Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico. Electronic address:
Paclitaxel (PCX) based treatments, commonly used to treat breast, ovarian and lung cancers, have the highest incidence of chemotherapy-induced neuropathic pain, affecting from 38 to 94 % of patients. Unfortunately, analgesic treatments are not always effective for PCX-induced neuropathic pain (PINP). This study aimed to evaluate the antinociceptive effect of clavulanic acid (CLAV), a clinically used β-lactam molecule, in both therapeutic and preventive contexts in mice with PINP.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720.
Norepinephrine in vertebrates and its invertebrate analog, octopamine, regulate the activity of neural circuits. We find that, when hungry, larvae switch activity in type II octopaminergic motor neurons (MNs) to high-frequency bursts, which coincide with locomotion-driving bursts in type I glutamatergic MNs that converge on the same muscles. Optical quantal analysis across hundreds of synapses simultaneously reveals that octopamine potentiates glutamate release by tonic type Ib MNs, but not phasic type Is MNs, and occurs via the G-coupled octopamine receptor (OAMB).
View Article and Find Full Text PDFNeurochem Res
January 2025
Departments of Pediatrics and Systems Pharmacology & Translational Therapeutics, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, 19104-4318, USA.
In mice engineered to express enhanced green fluorescent protein (eGFP) under the control of the entire glutamate transporter 1 (GLT1) gene, eGFP is found in all 'adult' cortical astrocytes. However, when 8.3 kilobases of the human GLT1/EAAT2 promoter is used to control expression of tdTomato (tdT), tdT is only found in a subpopulation of these eGFP-expressing astrocytes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!