We measured yield components, nitrogen fixation, soil nitrogen uptake and carbon isotope composition (δ(13)C) in a collection of chickpea genotypes grown in environments where water availability was the main source of yield variation. We aimed to quantify the phenotypic plasticity of these traits using variance ratios, and to explore their genetic basis using FST genome scan. Fifty-five genes in three genomic regions were found to be under selection for plasticity of yield; 54 genes in four genomic regions for the plasticity of seeds per m(2); 48 genes in four genomic regions for the plasticity of δ(13)C; 54 genes in two genomic regions for plasticity of flowering time; 48 genes in five genomic regions for plasticity of nitrogen fixation and 49 genes in three genomic regions for plasticity of nitrogen uptake from soil. Plasticity of yield was related to plasticity of nitrogen uptake from soil, and unrelated to plasticity of nitrogen fixation, highlighting the need for closer attention to nitrogen uptake in legumes. Whereas the theoretical link between δ(13)C and transpiration efficiency is strong, the actual link with yield is erratic due to trade-offs and scaling issues. Genes associated with plasticity of δ(13)C were identified that may help to untangle the δ(13)C-yield relationship. Combining a plasticity perspective to deal with complex G×E interactions with FST genome scan may help understand and improve both crop adaptation to stress and yield potential.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jxb/erw221 | DOI Listing |
Int J Biol Macromol
January 2025
School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, China. Electronic address:
The GRAS gene family, is instrumental in a myriad of biological processes, including plant growth and development. Our findings revealed that Paeonia ludlowii (Stern & G.Taylor) D.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, 453003, Henan, China; School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China. Electronic address:
The mechanisms underlying antigen receptor germline gene diversification have always been a topic of intensive study. Here, we discovered that the frequency of stem-loop sequences in the antigen receptor germline gene region is remarkably higher than the genomic background. By analyzing these stem-loop sequences' similarity and distribution patterns, we found that clustered regularly interspaced homologous stem-loop pairs (CRIHSP) are widely present on the germline genes of antigen receptors in different species.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
College of Animal Science, Guizhou University, Guiyang 550025, China; Key Laboratory of Animal Genetics, Breeding & Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China. Electronic address:
In agricultural production systems, the harm of both antibiotics and microplastics (MPs) to human health has been an important and continuously concerned issue. A small bagged silage production system was designed to investigate the effects of Lactoplantibacillus plantarum, polyethylene (PE) -MPs and their mixture on the silage fermentation and chemical composition of Tetracycline (TET) -contaminated whole plant maize. In addition, the bacterial community of silage samples was analyzed by using next generation genome sequencing technology.
View Article and Find Full Text PDFCurr Opin Struct Biol
January 2025
Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, SE-75123 Uppsala, Sweden. Electronic address:
Protein-protein associations are often mediated by an intrinsically disordered protein region interacting with a folded domain in a coupled binding and folding reaction. Classic physical organic chemistry approaches together with structural biology have shed light on mechanistic aspects of such reactions. Further insight into general principles may be obtained by interpreting the results through an evolutionary lens.
View Article and Find Full Text PDFComp Biochem Physiol Part D Genomics Proteomics
January 2025
Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan, China. Electronic address:
Triclocarban (TCC), an emerging organic contaminant, poses a potential threat to water resources and ecosystems. The wolf spider Pardosa pseudoannulata (Araneae: Lycosidae) is a dominant predator typically inhabiting rice fields or wet habitats near water sources. However, little is known about the effects of TCC on the wolf spiders.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!