Infection by hepatitis C virus (HCV) and its subsequent complications are a major cause of mortality worldwide. The water extract of the wild Egyptian artichoke (WEA) (Cynara cardunculus L. var. sylvestris (Lam.) Fiori) leaves is a freely available herbal product that is used for treatment of HCV-infection complications such as jaundice and ascites. The purpose of this study was to evaluate whether WEA exhibits activity against HCV, identify bioactive chemicals in its extract and to tentatively examine the potential inhibitory interactions of WEA with human drug-metabolizing enzymes. The current pilot clinical trial revealed that the water extract of a WEA plant decreased the HCV viral load below the detection level in 12 out of 15 patients. Furthermore, the liver enzymes ALT and AST, as well as the level of bilirubin were normalized. The total WEA extract inhibited CYP2B6 (OH-BUP) and CYP2C19 (5-OH-OME) with high affinity, IC50 ∼ 20 μg ml(-1), while moderate inhibitory interactions were observed for CYP1A2, CYP2D6, CYP2E1 and CYP3A4. Results presented herein suggest that the WEA exhibits strong antiviral activity against HCV and may be useful for its treatment. Compared to the artichoke product "Hepar SL Forte(®)", WEA was found to be more enriched in sesquiterpenes versus the abundance of phenolic compounds, especially flavonoids in Hepar SL Forte(®) as revealed via UPLC-MS analysis coupled to chemometrics.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6fo00656fDOI Listing

Publication Analysis

Top Keywords

wild egyptian
8
egyptian artichoke
8
hepatitis virus
8
revealed uplc-ms
8
water extract
8
wea exhibits
8
activity hcv
8
inhibitory interactions
8
wea
7
artichoke promising
4

Similar Publications

Introduction/objectives: Genetic variations could explain individual responses to drugs. This case-control study aimed to investigate the association between the multidrug resistance 1 (MDR1) gene exonic single nucleotide variants (SNVs), rs1128503/C1236T and rs1045642/C3435T, and the response to intravenous methylprednisolone in Egyptian patients with active systemic lupus erythematosus (SLE).

Method: Real-time polymerase chain reaction was used.

View Article and Find Full Text PDF

Scavenging is a widespread feeding strategy involving a diversity of taxa from different trophic levels, from apex predators to obligate scavengers. Scavenger species play a crucial role in ecosystem functioning by removing carcasses, recycling nutrients and preventing disease spread. Understanding the trophic roles of scavenger species can help identify specialized species with unique roles and species that may be more vulnerable to ecological changes.

View Article and Find Full Text PDF

Disease complex associated with begomoviruses infecting squash and cucumber in Saudi Arabia.

Cell Mol Biol (Noisy-le-grand)

November 2024

Plant Protection Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia.

During the field visits in growing season of 2022 in Dammam Region of Saudi Arabia, begomovirus-like symptoms including leaf curling, leaf cupping, leaf distortion, vein thickening and reduced leaf size were observed in squash and cucumber fields. Twenty-five samples were collected from each crop and PCR amplification was done using general diagnostic begomovirus primers (AC-1048/AV-494 and Begomo I/Begomo II). The obtained results showed desired sized amplified DNA fragments (550 bp and 1.

View Article and Find Full Text PDF

Background: Fagonia cretica L. (Family: Zygophyllaceae), is a wild shrub mostly found in Mediterranean districts and extensively used in folk medicine for a vast array of purposes such as antidiabetic and anticancer during the early stages. The goal of the current study was to validate the antioxidant, anti-inflammatory, and cytotoxic properties of Egyptian F.

View Article and Find Full Text PDF
Article Synopsis
  • * During the winter of 2021-2022, researchers isolated seventeen HPAI H5N8 viruses from duck outbreaks in Egypt, focusing on genetic changes that may increase risks to human health.
  • * The study found multiple genetic mutations that could enhance the virus's virulence and transmission among mammals, highlighting the need for improved biosecurity in duck farming to prevent potential pandemics.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!