A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Lack of fibroblast growth factor 21 accelerates metabolic liver injury characterized by steatohepatities in mice. | LitMetric

Fibroblast growth factor 21 (FGF21) concentrations are increased in human subjects who either have type 2 diabetes or nonalcoholic fatty liver disease (NAFLD). While excessive fat in the liver promotes the release of pro-inflammatory cytokines, NAFLD progresses from steatosis to non alcoholic steatohepatitis (NASH), a more aggressive form of hepatic damage, and lastly toward cirrhosis and HCC. In our previous study, loss of FGF21 is associated with hyper-proliferation, aberrant p53, and HCC development in diabetes mice. In this study, we proposed to investigate the liver metabolic disorders by diabetes and the potential roles of FGF21 played in NASH and potential carcinogenetic transformation of HCC. NASH was induced in FGF21 knockout (FGF21KO) mice by streptozotocin administration or fed with high fat diet (HFD). The pathological transformation of steatohepatities as well as parameters of inflammation, lipid metabolism, cellular events, mesenchymal-epithelial transition (MET) and Wnt/β-catenin signaling was determined in the FGF21 KO diabetic mice and HFD fed mice. We found that mice lacking the FGF21 gene are more prone to develop NASH. A compromised microenvironment of NASH, which could facilitate the HCC carcinogenetic transformation, was found in FGF21 KO mice under metabolic disorders by diabetes and HFD feeding. This study provided further evidence that lack of FGF21 worsened the metabolic disorders in NASH and could render a tumor microenvironment for HCC initiation and progression in the liver of diabetes mice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4889716PMC

Publication Analysis

Top Keywords

metabolic disorders
12
fibroblast growth
8
growth factor
8
mice
8
fgf21
8
diabetes mice
8
disorders diabetes
8
carcinogenetic transformation
8
nash
6
liver
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!