The life stages of seed germination and seedling establishment play a vital role in maintaining plant populations and determining range dynamics of species. Thus, it is not surprising that specific germination requirements and dormancy mechanisms have evolved in all major angiosperm clades. In a rapidly changing climate, we face growing pressure to manage, conserve and restore native plant species and communities. To achieve these aims, we require solid knowledge of whether and how seed germination requirements and dormancy status vary between different populations of a given species and how germination strategies may be affected by warming climatic conditions. We assessed the effect of decreasing durations of cold stratification (i.e. conditions representing a shortened winter as predicted under climate change) on germination and dormancy of the alpine herb Aciphylla glacialis. Our results confirmed previous research showing that A. glacialis seeds possess physiological dormancy that can be alleviated by cold stratification. In addition, the results demonstrated that A. glacialis seeds have underdeveloped embryos at dispersal; these grow to germinable size following 4-9 weeks at both constant 5°C and 10-5°C (day-night) temperatures. We conclude that A. glacialis exhibits morphophysiological dormancy. Furthermore, we found that the final percentage germination and dormancy status varied significantly among natural populations and that this variation did not correlate with elevation at the site of seed origin. Seeds germinated following 6-8 weeks of cold stratification, and seedlings showed no detrimental effects as a result of shorter stratification periods. Together, these results suggest that reduced duration of winter is unlikely to have direct negative impacts on germination or early seedling growth in A. glacialis. The causes and implications of the population variation in germination traits are discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4806741 | PMC |
http://dx.doi.org/10.1093/conphys/cou015 | DOI Listing |
Chin Clin Oncol
December 2024
Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany.
Pancreatic ductal adenocarcinoma (PDAC) is a malignant cancer with a high mortality and limited treatment options. Systemic chemotherapy remains the only approach for improving survival in patients with unresectable locally advanced and/or metastatic disease which comprises most patients. Targeted therapies have so far been disappointing with limited applicability and improvement in overall survival.
View Article and Find Full Text PDFJCO Oncol Pract
January 2025
Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.
Cachexia is a systemic wasting syndrome prevalent in patients with cancer that significantly affects quality of life, health care costs, and therapeutic outcomes. Despite its clinical importance, cachexia is rarely formally diagnosed. This deficiency presents a challenge for effective patient management and care, health care resource allocation, and the advancement of therapeutic approaches.
View Article and Find Full Text PDFProstate Cancer Prostatic Dis
January 2025
South Australian Immunogenomics Cancer Institute, University of Adelaide, Adelaide, Australia.
Sci Bull (Beijing)
December 2024
NOAA/Pacific Marine Environmental Laboratory, Seattle, Washington DC 20005, USA.
El Niño-Southern Oscillation (ENSO) exhibits a strong asymmetry between warm El Niño and cold La Niña in amplitude and temporal evolution. An El Niño often leads to a heat discharge in the equatorial Pacific conducive to its rapid termination and transition to a La Niña, whereas a La Niña persists and recharges the equatorial Pacific for consecutive years preconditioning development of a subsequent El Niño, as occurred in 2020-2023. Whether the multiyear-long heat recharge increases the likelihood of a transition to a strong El Niño remains unknown.
View Article and Find Full Text PDFPlant Signal Behav
December 2025
College of Medical Science, Longdong University, Qingyang, Gansu Province, China.
Red, known as Huangjing in Chinese, is a perennial plant valued in traditional Chinese medicine and is a nutritional food ingredient. With increasing market demand outpacing wild resource availability, cultivation has become essential for sustainable production. However, the cultivation of is challenged by the double dormancy characteristics of seeds, which include embryo and physiological dormancy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!