In many animal societies, groups of individuals form stable social units that are shaped by well-delineated dominance hierarchies and a range of affiliative relationships. How do socially complex groups maintain cohesion and achieve collective movement? Using high-resolution GPS tracking of members of a wild baboon troop, we test whether collective movement in stable social groups is governed by interactions among local neighbours (commonly found in groups with largely anonymous memberships), social affiliates, and/or by individuals paying attention to global group structure. We construct candidate movement prediction models and evaluate their ability to predict the future trajectory of focal individuals. We find that baboon movements are best predicted by 4 to 6 neighbours. While these are generally individuals' nearest neighbours, we find that baboons have distinct preferences for particular neighbours, and that these social affiliates best predict individual location at longer time scales (>10 minutes). Our results support existing theoretical and empirical studies highlighting the importance of local rules in driving collective outcomes, such as collective departures, in primates. We extend previous studies by elucidating the rules that maintain cohesion in baboons 'on the move', as well as the different temporal scales of social interactions that are at play.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4904494PMC
http://dx.doi.org/10.1038/srep27704DOI Listing

Publication Analysis

Top Keywords

nearest neighbours
8
predict individual
8
collective movement
8
stable social
8
maintain cohesion
8
social affiliates
8
collective
5
social
5
neighbours long-term
4
long-term affiliates
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!