The N-methyl d-aspartate receptors (NMDARs) mediating Ca(2+) uptake upon stimulation with glutamate and glycine were recently discovered in red blood cells (RBC) of healthy humans. Activation of these receptors with agonists triggered transient Ca(2+)-dependent decrease in hemoglobin oxygen affinity in RBC suspension. The aim of this study was to assess the potential physiological relevance of this phenomenon. Two groups formed by either healthy untrained volunteers or endurance athletes were subjected to a stepwise incremental cycling test to exhaustion. Plasma glutamate levels, activity of the NMDARs, and hemoglobin O2 affinity were measured in blood samples obtained before and after the exercise in both groups. Increase in plasma glutamate levels following exercise was observed in both groups. Transient Ca(2+) accumulation in response to the NMDAR stimulation with NMDA and glycine was followed by facilitated Ca(2+) extrusion from the RBC and compensatory decrease in cytosolic Ca(2+) levels. Short-term activation of the receptors triggered a transient decrease in O2 affinity of hemoglobin in both groups. These exercise-induced responses were more pronounced in athletes compared to the untrained subjects. Athletes were initially presented with lower basal intracellular Ca(2+) levels and hemoglobin oxygen affinity compared to non-trained controls. High basal plasma glutamate levels were associated with induction of hemolysis and formation of echinocytes upon stimulation with the receptor agonists. These findings suggest that glutamate release occurring during exhaustive exercise bouts may acutely facilitate O2 liberation from hemoglobin and improve oxygen delivery to the exercising muscle.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ceca.2016.05.005DOI Listing

Publication Analysis

Top Keywords

plasma glutamate
12
glutamate levels
12
untrained subjects
8
activation receptors
8
triggered transient
8
hemoglobin oxygen
8
oxygen affinity
8
ca2+ levels
8
ca2+
6
glutamate
5

Similar Publications

Background: The metabolism of plasma amino acid (AA) in children with autism spectrum disorder (ASD) has been extensively investigated, yielding inconclusive results. This study aims to characterize the metabolic alterations in AA profiles among early-diagnosed children with ASD and compare the findings with those from non-ASD children.

Methods: We analyzed plasma AA profiles, measured by ion exchange chromatography, from 1242 ASD children (median age = 4 years; 81% male).

View Article and Find Full Text PDF

This study aimed to evaluate the diagnostic potential of soluble Programmed Death Ligand 1 (sPD-L1) and Programmed Death 1 (sPD-1) molecules in plasma, along with urinary mRNA biomarkers-Prostate-Specific Membrane Antigen (), Prostate Cancer Antigen 3 (), and androgen receptor () genes-for identifying clinically significant prostate cancer (PCa), defined as pathological stage 3. In a cohort of 68 PCa patients, sPD-L1 and sPD-1 levels were quantified using ELISA, while mRNA transcripts were measured by RT-qPCR. Results highlight the potential of integrating these liquid-based biomarkers.

View Article and Find Full Text PDF

Parkinson's disease (PD) represents one of the most frequent neurodegenerative disorders for which clinically useful biomarkers remain to be identified and validated. Here, we adopted an untargeted omics approach to disclose lipidomic, metabolomic and proteomic alterations in plasma and in dermal fibroblasts of PD patients carrying mutations in TMEM175 gene. We revealed a wide dysregulation of lysosome, autophagy, and mitochondrial pathways in these patients, supporting a role of this channel in regulating these cellular processes.

View Article and Find Full Text PDF

Type 2 diabetes mellitus (T2DM) and obesity are critical global health issues with rising incidence rates. Glucagon-like peptide-1 (GLP-1) analogues have emerged as effective treatments due to their ability to regulate blood glucose levels and gastric emptying through central nervous signals involving hypothalamic receptors, such as leptin. To address the short plasma half-life of native GLP-1, a C-16 fatty acid was conjugated to lysine in the GLP-1 analogue sequence to enhance its longevity.

View Article and Find Full Text PDF

Objective: This study aimed to investigate the medicinal properties of SZS before and after processing and provide novel insights into its potential for treating insomnia.

Methods: This study employed the network pharmacology platform to gather information on the chemical composition of SZS, human targets, genes, molecular networks, and pathways associated with insomnia treatment using SZS. Liquid chromatography-tandem mass spectrometry (LC-MS/ MS) was utilized to analyze the chemical profiles of crude SZS, parched SZS, and their combined decoction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!