Donepezil, an acetylcholine esterase inhibitor, and ABT-239, a histamine H3 receptor antagonist/inverse agonist, require the integrity of brain histamine system to exert biochemical and procognitive effects in the mouse.

Neuropharmacology

Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmacologia and Tossicologia, Universitá di Firenze, Viale G. Pieraccini 6, 50139, Firenze, Italy. Electronic address:

Published: October 2016

Histaminergic H3 receptors (H3R) antagonists enhance cognition in preclinical models and modulate neurotransmission, in particular acetylcholine (ACh) release in the cortex and hippocampus, two brain areas involved in memory processing. The cognitive deficits seen in aging and Alzheimer's disease have been associated with brain cholinergic deficits. Donepezil is one of the acetylcholinesterase (AChE) inhibitor approved for use across the full spectrum of these cognitive disorders. We addressed the question if H3R antagonists and donepezil require an intact histamine neuronal system to exert their procognitive effects. The effect of the H3R antagonist ABT-239 and donepezil were evaluated in the object recognition test (ORT), and on the level of glycogen synthase kinase 3 beta (GSK-3β) phosphorylation in normal and histamine-depleted mice. Systemic administration of ABT-239 or donepezil ameliorated the cognitive performance in the ORT. However, these compounds were ineffective in either genetically (histidine decarboxylase knock-out, HDC-KO) or pharmacologically, by means of intracerebroventricular (i.c.v.) injections of the HDC irreversible inhibitor a-fluoromethylhistidine (a-FMHis), histamine-deficient mice. Western blot analysis revealed that ABT-239 or donepezil systemic treatments increased GSK-3β phosphorylation in cortical and hippocampal homogenates of normal, but not of histamine-depleted mice. Furthermore, administration of the PI3K inhibitor LY294002 that blocks GSK-3β phosphorylation, prevented the procognitive effects of both drugs in normal mice. Our results indicate that both donepezil and ABT-239 require the integrity of the brain histaminergic system to exert their procognitive effects and strongly suggest that impairments of PI3K/AKT/GSK-3β intracellular pathway activation is responsible for the inefficacy of both drugs in histamine-deficient animals.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuropharm.2016.06.010DOI Listing

Publication Analysis

Top Keywords

procognitive effects
16
system exert
12
abt-239 donepezil
12
gsk-3β phosphorylation
12
require integrity
8
integrity brain
8
h3r antagonists
8
exert procognitive
8
normal histamine-depleted
8
histamine-depleted mice
8

Similar Publications

Ketamine displays efficacious rapid-acting antidepressant (RAAD) activity in the rat chronic mild stress (CMS) model. It rapidly reverses anhedonia (CMS-induced sucrose consumption deficit) and attenuates working memory deficit (novel object recognition: NOR) following both systemic (intraperitoneal, i.p.

View Article and Find Full Text PDF

Procognitive and neurotrophic benefits of α5-GABA-A receptor positive allosteric modulation in a β-amyloid deposition mouse model of Alzheimer's disease pathology.

Neurobiol Aging

December 2024

Campbell Family Mental Health Research Institute of CAMH, 250 college street, Toronto, ON M5T 1R8, Canada; Department of Psychiatry, University of Toronto, 250 college street, Toronto, ON M5T 1R8, Canada; Department of Pharmacology and Toxicology, University of Toronto, Medical Sciences Building,  1 King's College Cir Room 4207, Toronto, ON M5S 1A8, Canada. Electronic address:

Reduced somatostatin (SST) and SST-expressing GABAergic neurons are well-replicated findings in Alzheimer's disease (AD) and are associated with cognitive deficits. SST cells inhibit pyramidal cell dendrites through α5-GABA-A receptors (α5-GABAA-R). α5-GABAAR positive allosteric modulation (α5-PAM) has procognitive and neurotrophic effects in stress and aging models.

View Article and Find Full Text PDF

Therapeutic Efficacy of the Inositol D-Pinitol as a Multi-Faceted Disease Modifier in the 5×FAD Humanized Mouse Model of Alzheimer's Amyloidosis.

Nutrients

December 2024

Grupo de Neuropsicofarmacología, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Unidades Clínicas de Neurología y Salud Mental, 29010 Málaga, Spain.

Background/objectives: Alzheimer's disease (AD), a leading cause of dementia, lacks effective long-term treatments. Current therapies offer temporary relief or fail to halt its progression and are often inaccessible due to cost. AD involves multiple pathological processes, including amyloid beta (Aβ) deposition, insulin resistance, tau protein hyperphosphorylation, and systemic inflammation accelerated by gut microbiota dysbiosis originating from a leaky gut.

View Article and Find Full Text PDF

Cannabidiol has been shown to ameliorate neuropathic pain and its affective components. Previous studies highlighted the pharmacological interaction between the CBD and opioid system, particularly the MOR, but the understanding of the interaction between CBD and kappa opioid receptor (KOR), physiologically stimulated by the endogenous opioid dynorphin, remains elusive. We assessed the pharmacological interactions between CBD and nor-BNI, a selective KOR antagonist in a rat neuropathic pain model.

View Article and Find Full Text PDF

Contemporary research evidence has corroborated a gradual loss of central cholinergic neurons in Alzheimer's Disease (AD). This progressive deterioration leads to cognitive dysfunction and impaired motor activity, culminating in the brain cell's death in the disease. The approved drugs for AD treatment can only offer relief from symptoms without addressing the underlying pathological hallmarks of the disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!