A unique "turn-on" fluorescence signalling strategy for highly specific detection of ascorbic acid using carbon dots as sensing probe.

Biosens Bioelectron

Swinburne Sarawak Research Centre of Sustainable Technologies, Swinburne University of Technology Sarawak Campus, Jalan Simpang Tiga, 93350 Kuching, Sarawak, Malaysia; Faculty of Engineering, Computing and Science, Swinburne University of Technology Sarawak Campus, Jalan Simpang Tiga, 93350 Kuching, Sarawak, Malaysia. Electronic address:

Published: November 2016

Carbon dots (CDs) that showed strong blue fluorescence were successfully synthesised from sodium alginate via furnace pyrolysis. The single step pyrolytic synthesis was simple to perform while yielded CDs with high photostability, good water solubility and minimum by-products. In order to design the probe with "turn-on" sensing capability, the CDs were screened against a series of metal cations to first "turn-off" the fluorescence. It was found that ferric ions (Fe(3+)) were most responsive and effective in quenching the fluorescence of CDs. Based on this observation, the conditioning of the probe was performed to ensure the fluorescence was completely quenched, while not overloading the system with Fe(3+). At the optimised condition, the CDs-Fe(3+) mixture served as a highly specific detection probe for ascorbic acid (AA). The analytical potential of the probe was evaluated and showed a good linear range of response for AA concentration of 24-40μg/mL. The selectivity study against other possible co-existing species was carried out and proved that our unique "turn-on" fluorescence signalling strategy was highly effective and selective towards AA as the target analyte. The probe was demonstrated for quantification of AA in real samples, which was the commercially available vitamin C supplement. The result showed good accuracy with minimum deviation from standard method adopted for validation purpose.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2016.05.087DOI Listing

Publication Analysis

Top Keywords

unique "turn-on"
8
"turn-on" fluorescence
8
fluorescence signalling
8
signalling strategy
8
strategy highly
8
highly specific
8
specific detection
8
ascorbic acid
8
carbon dots
8
fluorescence
6

Similar Publications

Individual theranostics with an integrated multifunction holds considerable promise for clinical application compared with multicomponent regimes. MnO nanoparticles with an ultrasmall size (4 nm) and mass production capability were developed with dual function of integrated tumor magnetic resonance imaging (MRI) and therapy. The high valence state of MnO nanocrystals enables a sensitive reaction with the glutathione (GSH) molecule and favorable decomposition ability, which further induces a unique, favorable, variable turn-off and turn-on MRI property.

View Article and Find Full Text PDF

Luminescent Metal-Organic Framework with Outstanding "Turn-On" Hg Sensing Ability First Constructed by an AIE Ligand.

Inorg Chem

January 2025

International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China.

Hg is highly toxic and can cause serious harm to the environment and humans. Thus, it is vital to develop efficient Hg sensors. In this work, a LMOF-based (LMOF = luminescent metal-organic framework) "turn-on" Hg sensor () is first developed by an aggregation-induced emission (AIE) functional ligand.

View Article and Find Full Text PDF

Aggregation-induced emission(AIE)for next-generation biosensing and imaging: A review.

Biosens Bioelectron

March 2025

Department of Academic Research, Beijing Ditan Hospital, Capital Medical University, National Center for Infectious Diseases, 8th Jingshun East Road, Beijing, 100015, China. Electronic address:

Luminescence technology is a powerful analytical tool for biomedical research as well as for marker detection. Luminescent materials with aggregation-induced emission (AIE) properties have attracted extensive research interest, and their unique luminescence characteristics, biocompatibility, and sensitivity make them useful for the development of fluorescence-turn-on biosensors with superior sensitivity. While numerous reviews have focused on the design of AIEgens, comprehensive summaries on the strategies for biosensor preparation and application fields remain limited.

View Article and Find Full Text PDF

Acetylcholinesterase (AChE) and AChE inhibitors play critical roles in the early diagnosis and treatment of Alzheimer's disease (AD). Herein, a fluorescence/colorimetry/smartphone triple-mode sensing platform was constructed for both AChE activity monitoring and AChE inhibitor screening by exploring a Cu (I) compound, CuI (SR) (R = CHCHNH), as a fluorescent probe. In comparison of most other fluorescent probes, CuI (SR) presented exceptional stability against pH, temperature, UV irradiation, redox agents, and metal ions, as well as good recyclability due to its unique chemical structure.

View Article and Find Full Text PDF

Background: Myocarditis is an inflammation of the heart muscle most often caused by viral infections. Sex differences in the immune response during myocarditis have been well described but upstream mechanisms in the heart that might influence sex differences in disease are not completely understood.

Methods: Male and female BALB/c wild type mice received an intraperitoneal injection of heart-passaged coxsackievirus B3 (CVB3) or vehicle control.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!