Torque and mechanomyogram relationships during electrically-evoked isometric quadriceps contractions in persons with spinal cord injury.

Med Eng Phys

Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia; Clinical Exercise and Rehabilitation Unit, Discipline of Exercise and Sports Sciences, Faculty of Health Sciences, The University of Sydney, Sydney, 2006 NSW, Australia.

Published: August 2016

The interaction between muscle contractions and joint loading produces torques necessary for movements during activities of daily living. However, during neuromuscular electrical stimulation (NMES)-evoked contractions in persons with spinal cord injury (SCI), a simple and reliable proxy of torque at the muscle level has been minimally investigated. Thus, the purpose of this study was to investigate the relationships between muscle mechanomyographic (MMG) characteristics and NMES-evoked isometric quadriceps torques in persons with motor complete SCI. Six SCI participants with lesion levels below C4 [(mean (SD) age, 39.2 (7.9) year; stature, 1.71 (0.05) m; and body mass, 69.3 (12.9) kg)] performed randomly ordered NMES-evoked isometric leg muscle contractions at 30°, 60° and 90° knee flexion angles on an isokinetic dynamometer. MMG signals were detected by an accelerometer-based vibromyographic sensor placed over the belly of rectus femoris muscle. The relationship between MMG root mean square (MMG-RMS) and NMES-evoked torque revealed a very high association (R(2)=0.91 at 30°; R(2)=0.98 at 60°; and R(2)=0.97 at 90° knee angles; P<0.001). MMG peak-to-peak (MMG-PTP) and stimulation intensity were less well related (R(2)=0.63 at 30°; R(2)=0.67 at 60°; and R(2)=0.45 at 90° knee angles), although were still significantly associated (P≤0.006). Test-retest interclass correlation coefficients (ICC) for the dependent variables ranged from 0.82 to 0.97 for NMES-evoked torque, between 0.65 and 0.79 for MMG-RMS, and from 0.67 to 0.73 for MMG-PTP. Their standard error of measurements (SEM) ranged between 10.1% and 31.6% (of mean values) for torque, MMG-RMS and MMG-PTP. The MMG peak frequency (MMG-PF) of 30Hz approximated the stimulation frequency, indicating NMES-evoked motor unit firing rate. The results demonstrated knee angle differences in the MMG-RMS versus NMES-isometric torque relationship, but a similar torque related pattern for MMG-PF. These findings suggested that MMG was well associated with torque production, reliably tracking the motor unit recruitment pattern during NMES-evoked muscle contractions. The strong positive relationship between MMG signal and NMES-evoked torque production suggested that the MMG might be deployed as a direct proxy for muscle torque or fatigue measurement during leg exercise and functional movements in the SCI population.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.medengphy.2016.05.012DOI Listing

Publication Analysis

Top Keywords

isometric quadriceps
8
contractions persons
8
persons spinal
8
spinal cord
8
cord injury
8
muscle contractions
8
nmes-evoked isometric
8
90° knee
8
muscle
5
torque mechanomyogram
4

Similar Publications

All-Soft-Tissue Medial Patellofemoral Complex Reconstruction for Revisions and Skeletally Immature Knees.

Arthrosc Tech

December 2024

Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, U.S.A.

The medial patellofemoral complex provides the primary static restraint to lateral patellar translation and is composed of the medial patellofemoral ligament and medial quadriceps tendon femoral ligament. Multiple techniques including medial patellofemoral ligament and/or medial quadriceps tendon femoral ligament reconstruction have demonstrated good results; however, modification of the femoral fixation technique is required for skeletally immature patients or revision cases in which anatomic bony fixation on the femur is not possible. This technique describes an all-soft-tissue procedure for single-bundle medial patellofemoral complex reconstruction in which the graft is fixed on the adductor tendon while using the medial collateral ligament as a distalizing pulley, for anatomic and isometric recreation of the native ligament.

View Article and Find Full Text PDF

Objective To evaluate the effects of knee flexor and extensor strength on the subjective function and motor performance of knees after anterior cruciate ligament reconstruction. Methods A total of 53 patients who underwent anterior cruciate ligament reconstruction in the National Institute of Sports Medicine,General Administration of Sport of China from June 2015 to June 2021 and met the inclusion criteria were enrolled in this study.The patients were followed up time for at least 2 years.

View Article and Find Full Text PDF

The Effect of Physiotherapy on Arthrogenic Muscle Inhibition After ACL Injury or Reconstruction: A Systematic Review.

Life (Basel)

December 2024

CESPU, Instituto Politécnico de Saúde do Norte, Escola Superior de Saúde do Vale do Ave, 4760-409 Vila Nova de Famalicão, Portugal.

Arthrogenic muscle inhibition (AMI) following ACL injury or reconstruction is a common issue that affects muscle activation and functional recovery. Thus, the objective of this study was to systematize the literature on the effects of physiotherapy interventions in the rehabilitation of AMI after ACL injury or reconstruction. A systematic review was conducted following the PRISMA guidelines.

View Article and Find Full Text PDF

Thigh muscles greatly influence knee joint loading, and abnormal loading significantly contributes to the progression of knee osteoarthritis (KOA). Muscle weakness in KOA patients is common, but the specific contribution of each thigh muscle to joint loading is unclear. The gait data from 10 severe female KOA patients and 10 controls were collected, and the maximum isometric forces of the biceps femoris long head (BFL), semitendinosus (ST), rectus femoris (RF), vastus lateralis (VL), and vastus medialis (VM) were calibrated via ultrasound.

View Article and Find Full Text PDF

Analyzing How Skinfold Thickness Affects Log-Transformed EMG Amplitude-Power Output Metrics.

Bioengineering (Basel)

December 2024

Physical Therapy Program, Department of Health Care Sciences, Wayne State University, College of Pharmacy and Health Sciences, Detroit, MI 48201, USA.

Background: The purpose of this study was to determine whether accounting for skinfold thickness would reduce the variability observed on a subject-by-subject basis for the -intercept and slope terms derived from the log-transformed EMG amplitude-power output relationship. We hypothesized that using skinfold thickness as a covariate would reduce the subject-by-subject variability in the -intercept and slope terms and, therefore, indicate potential mean differences between muscle groups.

Methods: Subjects had the skinfold from their three superficial quadriceps femoris muscles measured and then EMG electrodes placed over the three muscles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!