Robinia pseudoacacia is the main arbor species in the coastal saline-alkali area of the Yellow River Delta. Because most studies focus on the aboveground parts, detailed information regarding root functioning under salinity is scare. Root traits of seedlings of R. pseudoacacia including morphological, physiological and growth properties under four salinity levels (CK, 1‰, 3‰ and 5‰ NaCl) were studied by the pot experiments to better understand their functions and relationships with the shoots. The results showed that seedling biomass decreased by the reduction of root, stem and leaf biomass with the increase of salinity levels. With increasing salinity levels, total root length (TRL) and total root surface area (TRSA) decreased, whereas specific root length (SRL) and specific root area (SRA) increased. Salt stress decreased root activity (RA) and the maximum net photosynthetic rate (Amax) and increased the water saturation deficit (WSD) significantly in the body. Correlation analyses showed significantly correlations between root morphological and physiological parameters and seedling biomass and shoot physiological indexes. R. pseudoacacia seedlings could adapt to 1‰ salinity by regulating the root morphology and physiology, but failed in 5‰ salinity. How to adjust the water status in the body with decreasing water uptake by roots was an important way for R. pseudoacacia seedlings to adapt to the salt stress.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2016.06.012DOI Listing

Publication Analysis

Top Keywords

salt stress
12
salinity levels
12
root
10
robinia pseudoacacia
8
morphological physiological
8
seedling biomass
8
total root
8
root length
8
specific root
8
pseudoacacia seedlings
8

Similar Publications

Biotic stress significantly challenges the global citrus industry. Major post-harvest issues include diseases caused by , and . The negative impact of chemical fungicides on the environment and health necessitates eco-friendly alternatives.

View Article and Find Full Text PDF

Soil microbes influence the ecology and evolution of plant plasticity.

New Phytol

January 2025

Department of Biology, The University of New Mexico, Castetter Hall, 219 Yale Blvd NE, Albuquerque, NM, 87131-0001, USA.

Article Synopsis
  • Stress in plants triggers changes in their traits, but it's unclear if these changes are direct responses to stress or influenced by shifts in soil microbial communities.
  • In an experiment involving plants grown under different stress conditions, it was found that only live microbial communities led to delayed flowering in stressed plants, a response that proved to be maladaptive.
  • The study indicates that microbes not only influence plant trait expression but also disrupt genetic correlations important for plant evolution, suggesting a significant role of soil microbes in shaping plant plasticity and evolution under stress.
View Article and Find Full Text PDF

Genome-wide identification, characterization, and functional analysis of the CHX, SOS, and RLK genes in Solanum lycopersicum under salt stress.

Sci Rep

January 2025

Department of Plant Genetic Transformation, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Cairo, Egypt.

The cation/proton exchanger (CHX), salt overly sensitive (SOS), and receptor-like kinase (RLK) genes play significant roles in the response to salt stress in plants. This study is the first to identify the SOS gene in Solanum lycopersicum (tomato) through genome-wide analysis under salt stress conditions. Quantitative reverse transcription PCR (qRT-PCR) results indicated that the expression levels of CHX, SOS, and RLK genes were upregulated, with fold changes of 1.

View Article and Find Full Text PDF

AozC, a zn(II)Cys transcription factor, negatively regulates salt tolerance in Aspergillus oryzae by controlling fatty acid biosynthesis.

Microb Cell Fact

January 2025

Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, China.

Background: In the soy sauce fermentation industry, Aspergillus oryzae (A. oryzae) plays an essential role and is frequently subjected to high salinity levels, which pose a significant osmotic stress. This environmental challenge necessitates the activation of stress response mechanisms within the fungus.

View Article and Find Full Text PDF

Comparative analysis of HKTs in six poplar species and functional characterization of PyHKTs in stress-affected tissues.

BMC Genomics

January 2025

Key Laboratory for Forest Resource Conservation and Utilization in the Southwest Mountains of China (Ministry of Education), College of Forestry, Southwest Forestry University, Kunming, China.

Plant HKTs (High-affinity K transporters) are essential transporters for ion transport and homeostasis and play crucial roles in plant growth and stress responses. However, the evolution of HKTs in Populus species and their functions require further investigation. In this study, we identified 16 HKTs from six Populus species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!