Hydrophilic colloidal quantum dots with long peptide chain coats.

Colloids Surf B Biointerfaces

Laboratory of Biological Physics, Institute of Physics PAS, al. Lotników 32/46, 02-668 Warsaw, Poland. Electronic address:

Published: September 2016

AI Article Synopsis

  • The study discusses how colloidal CdSe quantum dots (QDs) are transformed from hydrophobic to hydrophilic by coating them with long peptide chains from membrane scaffold proteins (MSP).
  • The process involves initial solubilization of QDs using detergents, with n-octyl glucoside being particularly effective, and analyses reveal that the resulting QD-MSP conjugates are mostly discoidal in shape, formed by single QDs surrounded by helical peptide belts.
  • Fourier-transform infrared spectroscopy shows that the proteins maintain their structure during conjugate formation, and the resulting QD-MSP conjugates exhibit enhanced stability in water, paving the way for future research on single peptide-coated QDs.

Article Abstract

Here, the transition of colloidal CdSe quantum dots (QDs) from hydrophobic to hydrophilic environments after coating the surface with long peptide chains of membrane scaffold proteins (MSP) is reported. The intermediate step included the solubilization of QDs with detergents, where n-octyl glucoside was the most promising ligand. Furthermore, size analysis by fluorescence correlation spectroscopy, gel filtration and atomic force microscopy suggested that the obtained QD-MSP conjugates were primarily discoidal and were likely formed from single QDs tightly encircled by helix belts. In addition, Fourier-transformed infrared spectroscopy analysis confirmed the preservation of the secondary structure of most proteins during conjugate formation, with no signs of denaturation. The obtained QD-MSP conjugates were optimal in terms of stability in water environments, suggesting that it is possible to obtain QDs with single peptide coats and providing the first guidelines for future research in this direction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2016.05.081DOI Listing

Publication Analysis

Top Keywords

quantum dots
8
long peptide
8
qd-msp conjugates
8
hydrophilic colloidal
4
colloidal quantum
4
dots long
4
peptide chain
4
chain coats
4
coats transition
4
transition colloidal
4

Similar Publications

A green methodology for the synthesis of carbon quantum dots (CQDs) from coffee husk without the use of any toxic solvents is proposed in this work. Sonochemical exfoliation of biochar, obtained from the thermal carbonization of coffee husk (from a certified coffee seeds) at low temperature in an air-restricted atmosphere, is described as an alternative procedure for the sustainable production of CQDs. The synthesized CQDs exhibited blue fluorescence with a strong maximum emission band at 410 nm when excited at a maximum absorption wavelength of 330 nm.

View Article and Find Full Text PDF

Microwave synthesis of molybdenum disulfide quantum dots and the application in bilirubin sensing.

Methods Appl Fluoresc

January 2025

Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang, Liaoning Province, China, Shenyang, 110004, CHINA.

Molybdenum disulfide quantum dots (MoS2 QDs) is a new type of graphite like nanomaterial, which exhibited well chemical stability, unique fluorescence characteristics, and excellent biocompatibility. The conventional hydrothermal synthesis of MoS2 generally requires a long-term reaction at high temperature and high pressure. Herein, we have developed a simple and fast MoS2 QDs synthesis scheme using microwave heating, and further modified the surface of MoS2 QDs using 3-aminophenylboronic acid.

View Article and Find Full Text PDF

Amplified electrochemiluminescence of Ru(dcbpy) via coreactant active sites on nitrogen-doped graphene quantum dots.

Talanta

January 2025

School of Agricultural Engineering, Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, Jiangsu University, Zhenjiang, Jiangsu, 212013, China; College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang, Henan, 471003, China. Electronic address:

Searching for new alternative to tripropylamine (TPrA) with low toxicity and high chemical stability for the tris(4,4'-dicarboxylic acid-2,2'-bipyridyl)ruthenium (II) (Ru(dcbpy)) based coreactant electrochemiluminescence (ECL) system is essential for widespread analytical applications. Here, nitrogen-doped graphene quantum dots (NGQDs) have been discovered to significantly amplify the ECL emission and increase the ECL efficiency of Ru(dcbpy) for the first time. However, the mechanism by which NGQDs act as coreactants is not well comprehended.

View Article and Find Full Text PDF

Structural and photoelectric properties of p-i-n photodiodes based on GeSiSn/Si multiple quantum dots both on Si and silicon-on-insulator (SOI) substrates were investigated. Elastic strained state of grown films was demonstrated by x-ray diffractometry. Annealing of p-i-n structures before the mesa fabrication can improve the ideality factor of current-voltage characteristics.

View Article and Find Full Text PDF

Microorganisms serve as biological factories for the synthesis of nanomaterials such as CdS quantum dots. Based on the uniqueness of sp., a one-step route was explored to directly convert cadmium waste into CdS QDs using these bacteria.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!