Lenghty reverse poly(butylene oxide)-poly(ethylene oxide)-poly(butylene oxide) polymeric micelles and gels for sustained release of antifungal drugs.

Int J Pharm

Grupo de Física de Coloides y Polímeros, Departamento de Física de la Materia Condensada; Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain. Electronic address:

Published: August 2016

In this work, we present a detailed study of the potential application of polymeric micelles and gels of four different reverse triblock poly(butylene oxide)-poly(ethylene oxide)-poly(butylene oxide) copolymers (BOnEOmBOn, where n denotes the respective block lengths), specifically BO8EO90BO8, BO14EO378BO14, BO20EO411BO20 and BO21EO385BO21, as effective drug transport nanocarriers. In particular, we tested the use of this kind of polymeric nanostructures as reservoirs for the sustained delivery of the antifungals griseofulvin and fluconazole for oral and topical administration. Polymeric micelles and gels formed by these copolymers were shown to solubilize important amounts of these two drugs and to have a good stability in physiologically relevant conditions for oral or topical administration. These polymeric micellar nanocarriers were able to release drugs in a sustained manner, being the release rate slower as the copolymer chain hydrophobicity increased. Different sustained drug release profiles were observed depending on the medium conditions. Gel nanocarriers were shown to display longer sustained release rates than micellar formulations, with the existence of a pulsatile-like release mode under certain solution conditions as a result of their inner network structure. Certain bioadhesive properties were observed for the polymeric physical gels, being moderately tuned by the length and hydrophobicity of the polymeric chains. Furthermore, polymeric gels and micelles showed activity against the yeast Candida albicans and the mould demartophytes (Trichophyton rubrum and Microsporum canis) and, thus, may be useful for the treatment of different cutaneous fungal infections.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2016.06.013DOI Listing

Publication Analysis

Top Keywords

polymeric micelles
12
micelles gels
12
polybutylene oxide-polyethylene
8
oxide-polyethylene oxide-polybutylene
8
oxide-polybutylene oxide
8
polymeric
8
sustained release
8
oral topical
8
topical administration
8
administration polymeric
8

Similar Publications

Magnetic microscale polymeric nanocomposites in drug delivery: advances and challenges.

Drug Discov Today

December 2024

Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, 3200 South University Drive, Ft. Lauderdale, FL 33328-2018, USA. Electronic address:

Magnetic polymeric nanocomposites are a modern class of materials in which magnetic nanoparticles are embedded in a polymeric matrix. This combination of magnetic responsiveness and tuneable properties bestows versatility on this class of polymer nanocomposite material, which has potentially broad applications in drug delivery, imaging, environmental remediation and beyond. This review covers the uses of magnetic polymeric nanocomposites in drug delivery, discussing magnetic micelles, magnetic liposomes, magnetic hydrogels, magnetic sponges, magnetic mesoporous silica nanoparticles, magnetic microrobots, magnetic elastomers and magnetic scaffolds.

View Article and Find Full Text PDF

Nanotechnology in cancer therapy has significantly advanced treatment precision, effectiveness, and safety, improving patient outcomes and personalized care. Engineered smart nanoparticles and cell-based therapies are designed to target tumor cells, precisely sensing the tumor microenvironment (TME) and sparing normal cells. These nanoparticles enhance drug accumulation in tumors by solubilizing insoluble compounds or preventing their degradation, and they can also overcome therapy resistance and deliver multiple drugs simultaneously.

View Article and Find Full Text PDF

A classical crystallization usually grows epitaxially from a crystal nucleus. Presented in this study is an unusual endotaxy growth manner of a crystalline homopolymer to form hexagonal nanosheets. The amphiphilic homopolymer, poly(3-(4-(phenyldiazenyl)phenoxy)propyl methacrylate) (PAzoPMA), is first annealed in isopropanol to afford a hexagonal nut-like structure.

View Article and Find Full Text PDF

Enhancing glioblastoma therapy via intranasal administration of highly potent cell-penetrating peptide decorated nanoparticles.

J Control Release

December 2024

Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, 221 Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea; College of Pharmacy, Chung-Ang University, 221 Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea. Electronic address:

Glioblastoma multiforme (GBM) is a devastating primary tumor of the central nervous system with a significantly poor prognosis. The primary challenge in treating GBM lies in the restrictive nature of the blood-brain barrier (BBB), impeding effective drug delivery to the brain. In this study, intranasal polymeric micelles encapsulating a quercetin-etoposide combination were developed to induce synergistic apoptotic effects and enhance direct drug delivery to the brain.

View Article and Find Full Text PDF

Glabridin, a flavonoid derived from the plant , has garnered significant attention due to its diverse pharmacological effects, including antioxidant, antibacterial, anti-inflammatory, hypolipidemic, and hypoglycemic activities. Studies have shown that glabridin exhibits substantial antitumor activity by modulating the proliferation, apoptosis, metastasis, and invasion of cancer cells through the targeting of various signaling pathways, thus indicating its potential as a therapeutic agent for malignant tumors. To enhance its solubility, stability, and bioavailability, several drug delivery systems have been developed, including liposomes, cyclodextrin inclusion complexes, nanoparticles, and polymeric micelles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!