Fabrication of mesoporous titania-zirconia composite membranes based on nanoparticles improved hydrosol.

J Colloid Interface Sci

State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, College of Chemistry and Chemical Engineering, Nanjing Tech University, 210009, China.

Published: September 2016

A novel method for the fabrication of mesoporous titania-zirconia (TiO2ZrO2) composite membranes was successfully developed based on nanoparticles (NPs) improved hydrosol. ZrO2 hydrosols were synthesized through a straightforward sol-gel route using zirconium oxychloride. Compared to the polymeric sol route, this method was found to be more environmentally friendly because organic solvent was not required. Further, highly hydrophilic TiO2 NPs of 10-20nm were well dispersed in the sol and effectively reduced the sol infiltrating into the channels of the support layer by a "bridging" effect. After a rapid evaporation process, a mixed matrix gel was formed on the surface of the support. The dynamic mechanical analysis results showed that the toughness and stiffness of the gel were significantly strengthened, which was beneficial to reduce the risk of membrane cracking. So, an integrated, crack-free mesoporous TiO2ZrO2 composite membrane was obtained by directly coating and sintering the mixture on a macroporous support. It showed that the composite membrane delivered better separation performance though the filtration test. The water flux, molecular weight cutoff, and average pore size of the synthesized membrane were 60Lm(-2)h(-1)bar(-1), 4704Da, and 3.5nm, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2016.05.065DOI Listing

Publication Analysis

Top Keywords

fabrication mesoporous
8
mesoporous titania-zirconia
8
composite membranes
8
based nanoparticles
8
improved hydrosol
8
tio2zro2 composite
8
composite membrane
8
composite
4
titania-zirconia composite
4
membranes based
4

Similar Publications

Purpose: Multi-walled carbon nanotubes (MWCNTs) were used as carriers for silver nanoparticles (AgNPs). In this process, MWCNTs were coated with mesoporous silica (MWCNT-Silica) for uniform and regular loading of AgNPs on the MWCNTs. In addition, astaxanthin (AST) extract was used as a reducing agent for silver ions to enhance the antioxidant, antibiofilm, and anticancer activities of AgNPs.

View Article and Find Full Text PDF

Optimizing the Coordination Energy of Co-N Sites by Co Nanoparticles Integrated with Fe-NCNTs for Boosting PEMFC and Zn-Air Battery Performance.

Small

January 2025

School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300072, China.

Enhancing the catalytic performance and durability of M-N─C catalyst is crucial for the efficient operation of proton exchange membrane fuel cells (PEMFCs) and Zn-Air batteries (ZABs). Herein, an approach is developed for the in situ fabrication of a MOFs-derived porous carbon material, co-loaded with Co nanoparticles (NPs) and Co-N sites and integrated onto Fe-doped carbon nanotubes (CNTs), named Co-NC/Fe-NCNTs. Incorporating polymer-wrapped CNTs improves MOFs dispersion annealing at high temperature, which amplifies the three-phase boundary (TPB) by generating much more mesopores and exposing additional active sites within the catalysts layer.

View Article and Find Full Text PDF

Room temperature synthesis of one-dimensional hierarchical hollow BiOBr with tunable photocatalysis reaction pathway for RhB under visible light.

Environ Res

January 2025

Jiangxi Province Key Laboratory of Surface Engineering, Jiangxi Science & Technology Normal University, Nanchang, 330013, PR China; School of Materials and Energy, Jiangxi Science & Technology Normal University, Nanchang, 330013, PR China. Electronic address:

One-dimensional (1D) hierarchical photocatalyst has the advantages of 1D materials and hierarchical materials, which is a kind of potential high performance photocatalytic materials. However, how to efficiently synthesize 1D hierarchical BiOBr is still a huge challenge. Herein, 1D rod-like BiO(OH)(NO)·3HO, the hydrolysis product of Bi(NO)·5HO, was acted as both the template and Bi source to synthesize 1D hierarchical hollow BiOBr (1DHHBr) through a facile solution stirring method at room temperature, using KBr as Br source.

View Article and Find Full Text PDF

Liquid-nano-liquid interface-oriented anisotropic encapsulation.

Proc Natl Acad Sci U S A

January 2025

Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China.

Emulsion interface engineering has been widely employed for the synthesis of nanomaterials with various morphologies. However, the instability of the liquid-liquid interface and uncertain interfacial interactions impose significant limitations on controllable fabrications. Here, we developed a liquid-nano-liquid interface-oriented anisotropic encapsulation strategy for fabricating asymmetric nanohybrids.

View Article and Find Full Text PDF

Background: The 3D printing of macro- and mesoporous biomimetic grafts composed of polycaprolactone (PCL) infused with nanosized synthetic smectic clay is a promising innovation in biomaterials for bone tissue engineering (BTE). The main challenge lies in achieving a uniform distribution of nanoceramics across low to high concentrations within the polymer matrix while preserving mechanical properties and biological performance essential for successful osseointegration.

Methods: This study utilized 3D printing to fabricate PCL scaffolds enriched with nanosized synthetic smectic clay (LAP) to evaluate its effects on structural, chemical, thermal, mechanical, and degradative properties, with a focus on in vitro biological performance and non-toxicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!