Mechanism-specific injury biomarkers predict nephrotoxicity early following glyphosate surfactant herbicide (GPSH) poisoning.

Toxicol Lett

South Asian Clinical Toxicology Research Collaboration, University of Peradeniya, Peradeniya, Sri Lanka; TACT Research Group, Department of Pharmacology, SOMS, Sydney Medical School, University of Sydney, NSW, Australia.

Published: September 2016

Acute kidney injury (AKI) is common following glyphosate surfactant herbicide (GPSH) self-poisoning. Serum creatinine (sCr) is the most widely used renal biomarker for diagnosis of AKI although a recent study in rats suggested that urinary kidney injury molecule-1 predicted AKI earlier and better after GPSH-induced nephrotoxicity. We explored the utility of a panel of biomarkers to diagnose GPSH-induced nephrotoxicity in humans. In a prospective multi-centre observational study, serial urine and blood samples were collected until discharge and at follow-up. The diagnostic performance of each biomarker at various time points was assessed. AKI was diagnosed using the Acute Kidney Injury Network (AKIN) definitions. The added value of each biomarker to sCr to diagnose AKI was assessed by the integrated discrimination improvement (IDI) metric. Of 90 symptomatic patients, 51% developed AKI and 5 patients who developed AKIN≥2 died. Increased sCr at 8 and 16h predicted moderate to severe AKI and death. None of the 10 urinary biomarkers tested increased above normal range in patients who did not develop AKI or had mild AKI (AKIN1); most of these patients also had only minor clinical toxicity. Absolute concentrations of serum and urinary cystatin C, urinary interleukin-18 (IL-18), Cytochrome C (CytoC) and NGAL increased many fold within 8h in patients who developed AKIN≥2. Maximum 8 and 16h concentrations of these biomarkers showed an excellent diagnostic performance (AUC-ROC ≥0.8) to diagnose AKIN≥2. However, of these biomarkers only uCytoC added value to sCr to diagnose AKI when assessed by IDI metrics. GPSH-induced nephrotoxicity can be diagnosed within 24h by sCr. Increases in uCytoC and uIL-18 confirm GPSH-induces apoptosis and causes mitochondrial toxicity. Use of these biomarkers may help to identify mechanism specific targeted therapies for GPSH nephrotoxicity in clinical trials.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.toxlet.2016.06.001DOI Listing

Publication Analysis

Top Keywords

kidney injury
12
gpsh-induced nephrotoxicity
12
aki
10
glyphosate surfactant
8
surfactant herbicide
8
herbicide gpsh
8
acute kidney
8
diagnostic performance
8
scr diagnose
8
diagnose aki
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!