The widespread application of array comparative genomic hybridization (aCGH) has provided new insights into the clinical significance of copy number variations (CNVs) in the human genome. Many microdeletion syndromes have recently been linked to corresponding reciprocal microduplication syndromes related to CNVs in the same chromosomal regions. However, the extent of CNVs may not be restricted to only microduplications but may also include microtriplications or even quadruplications. 4q21 microdeletion syndrome is one of these recently described syndromes. The phenotype includes growth restriction, neonatal hypotonia, severe developmental delay, absent or delayed speech, and distinct facial features. The minimal critical deleted region, which is 1.3 Mb in size, contains the PRKG2, RASGEF1B, HNRNPD, HNRPDL, and ENOPH1 genes. Here, we report a 5.4-year-old girl with developmental delay, absence of speech, muscular hypertension, macrocephaly, a broad forehead, frontal bossing, relatively elongated extremities, a vascular malignant hemangioma in anamnesis, and elongated sigmoid colon. aCGH revealed a microtriplication at 4q21.21-q21.22 that was 1.61 Mb in size. This de novo microtriplication included nine genes (BMP3, PRKG2, RASGEF1B, HNRNPD, HNRPDL, ENOPH1, TMEM150C, LINC00575, and SCD5) and overlapped with the minimal critical region for 4q21 microdeletion syndrome. Some clinical features of the patient were similar to those of 4q21 microdeletion (macrocephaly, frontal bossing, developmental delay, absence of speech, and anxiety), whereas others were mirrored (elongated extremities and muscular hypertension). The first identified case of a de novo microtriplication at 4q21.21-q21.22 emphasizes the clinical significance of CNVs at 4q21 for patients with developmental delay and absence of speech. © 2016 Wiley Periodicals, Inc.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ajmg.a.37754 | DOI Listing |
Pediatr Neurol
January 2025
Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Engineering Research Center of Computational Imaging and Medical Intelligence, Xi'an, China. Electronic address:
Background: Preterm infants are at high risk for subsequent neurodevelopmental disability. Early developmental characterization of brain and neurobehavioral function is critical for identifying high-risk infants. This study aimed to elucidate the early evolution of sensorimotor function in preterm neonates by exploring postnatal age-related changes in the brain white matter (WM) and neurobehavioral abilities.
View Article and Find Full Text PDFMol Genet Genomic Med
February 2025
Department of Chemistry and Molecular Biology, Gothenburg University, Gothenburg, Sweden.
Background: SYNGAP1 encodes a Ras/Rap GTPase-activating protein that is predominantly expressed in the brain with the functional roles in regulating synaptic plasticity, spine morphogenesis, and cognition function. Pathogenic variants in SYNGAP1 have been associated with a spectrum of neurodevelopmental disorders characterized by developmental delays, intellectual disabilities, epilepsy, hypotonia, and the features of autism spectrum disorder. The aim of this study was to identify a novel SYNGAP1 gene variant linked to neurodevelopmental disorders and to evaluate the pathogenicity of the detected variant.
View Article and Find Full Text PDFRiga-Fede disease (RFD) is a rare, benign condition marked by traumatic ulceration on the tongue's ventral side in infants. It arises from friction between the tongue and lower incisors during sucking, potentially worsening into a keratinized lesion if the cause is not addressed. This report details the case of a 1-year-6-month-old male with hydrocephalus, cleft palate, corpus callosum dysgenesis, neuropsychomotor developmental delay, and tracheostomy and gastrostomy needs.
View Article and Find Full Text PDFNat Prod Res
January 2025
Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, Brazil.
(L.) R. Br.
View Article and Find Full Text PDFCurr Med Chem
January 2025
Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway.
Mercury is a pervasive global pollutant, with primary anthropogenic sources including mining, industrial processes, and mercury-containing products such as dental amalgams. These sources release mercury into the environment, where it accumulates in ecosystems and enters the food chain, notably through bioamplification in marine life, posing a risk to human health. Dental amalgams, widely used for over a century, serve as a significant endogenous source of inorganic mercury.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!