The enigmatic membrane fatty acid transporter CD36: New insights into fatty acid binding and their effects on uptake of oxidized LDL.

Prostaglandins Leukot Essent Fatty Acids

Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA 02118, United States. Electronic address:

Published: November 2018

The scavenger receptor CD36 binds numerous small biomolecules, including fatty acids, and even large ligands such as oxidized LDL, for which it is considered a receptor. Although CD36 has often been postulated to "transport" fatty acids across the plasma membrane, fatty acids translocation (mass transport or kinetics) was not affected by expression of CD36 in HEK293 cells; however, esterification of fatty acids (cellular uptake) was increased. These recent results from our lab are consistent with the established mechanism of fatty acid entry into cells by passive diffusion (flip-flop) and also with the well-documented enhancement of uptake of fatty acids by CD36 in other cell types. A fascinating new discovery is that CD36 has multiple fatty acid binding sites on the extracellular domain of CD36. As illuminated by new methodologies that we have applied, these sites have high affinity and exhibit rapid exchange with the medium. In an initial study of functional consequences of binding, several dietary fatty acids enhanced uptake of oxidized LDL into HEK293 cells expressing CD36. This is the first established link between physical binding of fatty acids and a function of CD36, and has implications for obesity and atherosclerosis. New methods as those used in our study could also be applied to elucidate other functional roles of fatty acid binding to CD36.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plefa.2016.05.005DOI Listing

Publication Analysis

Top Keywords

fatty acids
28
fatty acid
20
fatty
12
acid binding
12
oxidized ldl
12
cd36
10
membrane fatty
8
uptake oxidized
8
receptor cd36
8
hek293 cells
8

Similar Publications

Background: Diabetes mellitus is associated with morphological and functional impairment of the heart primarily due to lipid toxicity caused by increased fatty acid metabolism. Extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) have been implicated in the metabolism of fatty acids in the liver and skeletal muscles. However, their role in the heart in diabetes remains unclear.

View Article and Find Full Text PDF

Phytochemical composition, antioxidant and antimicrobial activities of Delile ex Godr flowers extracts.

Nat Prod Res

January 2025

Laboratory of Organic Chemistry LR17-ES08 (Natural Substances Team), Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia.

The phytochemical profile of various plant species reveals that some compounds possess notable antioxidant and antimicrobial properties. In this study we investigated for the first time, the antioxidant activity (FRAP, DPPH and TAC), total phenolic contents and total flavonoid contents of Delile ex Godr flowers extracts (-hexane, ethyl acetate and methanol) as well as their antimicrobial activity. The results obtained showed that the methanol extract contained the highest content of total phenolics (346.

View Article and Find Full Text PDF

In health, the liver is a metabolically flexible organ that plays a key role in regulating systemic lipid and glucose concentrations. There is a constant flux of fatty acids (FAs) to the liver from multiple sources, including adipose tissue, dietary, endogenously synthesized from non-lipid precursors, intrahepatic lipid droplets and recycling of triglyceride-rich remnants. Within the liver, FAs are used for triglyceride synthesis, which can be oxidized, stored or secreted in very low-density lipoproteins into the systemic circulation.

View Article and Find Full Text PDF

: Laurocapram (Azone) attracted attention 40 years ago as a compound with the highest skin-penetration-enhancing effect at that time; however, its development was shelved due to strong skin irritation. We had already prepared and tested an ante-enhancer (IL-Azone), an ionic liquid (IL) with a similar structure to Azone, consisting of ε-caprolactam and myristic acid, as an enhancer candidate that maintains the high skin-penetration-enhancing effect of Azone with low skin irritation. In the present study, fatty acids with different carbon numbers (caprylic acid: C8, capric acid: C10, lauric acid: C12, myristic acid: C14, and oleic acid: C18:1) were selected and used with ε-caprolactam to prepare various IL-Azones in the search for a more effective IL-Azone.

View Article and Find Full Text PDF

This study presents a comprehensive phyto- and histochemical analysis of three species: L., the Balkan endemic Guss., and the Bulgarian endemic Delip.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!