Regulation of peroxisome proliferator-activated receptor gamma on milk fat synthesis in dairy cow mammary epithelial cells.

In Vitro Cell Dev Biol Anim

Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, 150030, People's Republic of China.

Published: December 2016

Peroxisome proliferator-activated receptor gamma (PPARγ) participates in lipogenesis in rats, goats, and humans. However, the exact mechanism of PPARγ regulation on milk fat synthesis in dairy cow mammary epithelial cells (DCMECs) remains largely unexplored. The aim of this study was to investigate the role of PPARγ regarding milk fat synthesis in DCMECs and to ascertain whether milk fat precursor acetic acid and palmitic acid could interact with PPARγ signaling to regulate milk fat synthesis. For this study, we examined the effects of PPARγ overexpression and gene silencing on cell growth, triacylglycerol synthesis, and the messenger RNA (mRNA) and protein expression levels of genes involved in milk fat synthesis in DCMECs. In addition, we investigated the influences of acetic acid and palmitic acid on the mRNA and protein levels of milk lipogenic genes and triacylglycerol synthesis in DCMECs transfected with PPARγ small interfering RNA (siRNA) and PPARγ expression vector. The results showed that when PPARγ was silenced, cell viability, proliferation, and triacylglycerol secretion were obviously reduced. Gene silencing of PPARγ significantly downregulated the expression levels of milk fat synthesis-related genes in DCMECs. PPARγ overexpression improved cell viability, proliferation, and triacylglycerol secretion. The expression levels of milk lipogenic genes were significantly increased when PPARγ was overexpressed. Acetic acid and palmitic acid could markedly improve triacylglycerol synthesis and upregulate the expression levels of PPARγ and other lipogenic genes in DCMECs. These results suggest that PPARγ is a positive regulator of milk fat synthesis in DCMECs and that acetic acid and palmitic acid could partly regulate milk fat synthesis in DCMECs via PPARγ signaling.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11626-016-0059-4DOI Listing

Publication Analysis

Top Keywords

milk fat
36
fat synthesis
28
synthesis dcmecs
20
acetic acid
16
acid palmitic
16
palmitic acid
16
expression levels
16
pparγ
14
triacylglycerol synthesis
12
levels milk
12

Similar Publications

Effects of rumen-degradable starch on lactation performance, gastrointestinal fermentation, and plasma metabolomic in dairy cows.

Int J Biol Macromol

January 2025

State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Centre of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China. Electronic address:

This study investigated the effects of rumen-degradable starch (RDS) on lactation performance, gastrointestinal fermentation, and plasma metabolomics in dairy cows. Six mid-lactation cows, fitted with rumen, duodenum, and ileum cannulas, were used in a duplicated 3 × 3 Latin square design with 28-day periods. The cows were fed a low RDS (LRDS; 62.

View Article and Find Full Text PDF

The present study was conducted to analyze the correlation between the milk fat content of Binglangjiang buffaloes and their microbial and host metabolites. The 10 buffaloes with the highest milk fat content (HF, 5.60 ± 0.

View Article and Find Full Text PDF

To investigate the impact of maternal microbiota during lactation in different beef cattle breeds on their own immune levels, milk quality, and the growth and development of their offspring, this study measured the immune parameters, intestinal microbiota diversity, and milk quality of Pingliang red cattle and Simmental cattle, and performed a correlation analysis with the growth and development of their offspring. Our study showed that during lactation, Pingliang red cattle had significantly higher IL-6 levels than Simmental cattle, while the latter exhibited higher levels of immune factors such as IgG, IgA, IgM, IL-1β, and TNFα. The analysis of the intestinal microbiota of lactating cows found that Pingliang red cattle were rich in and , while Simmental cattle had a higher proportion of Actinobacteria.

View Article and Find Full Text PDF

Composite crosses result from the mating of two or more distinct cattle breeds. Breeding performance may improve rapidly using a well-organized composite breeding system and a clear selection index. The KiwiCross is a popular composite cross in New Zealand, combining Holstein-Friesian (high milk production) and Jersey (high milk fat).

View Article and Find Full Text PDF

This study evaluated the influences of coated folic acid (CFA) and folic acid (FA) on lactation performance, apparent digestibility, rumen volatile fatty acid (VFA) production, blood metabolism, and hepatic lipid content in cows. A total of 140 Holstein cows were allocated to seven groups in a randomized block design. Cows in the control received no addition, those in the in low CFA (LCFA), medium CFA (MCFA), and high CFA (HCFA) groups received CFA at 135, 270, and 405 mg FA/d, and those in the low FA (LFA), medium FA (MFA), and high FA (HFA) groups received FA at 135, 270, and 405 mg/d.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!