Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Skin is a very complex organ and hence designing a bioengineered skin model replicating the essential physiological characteristics for replacing the diseased or damaged parts has been a challenging goal for many. Newer technologies for satisfying most of the criteria are being attempted with the copious efforts of biologists, engineers, physiologists, using multitude of features in combination. Amongst them nanotechnology based biomaterials have gained prominence owing to the enhanced pharmacokinetics, bio-distribution profile, extended half-life and reduced side effects. Designing a matrix that can be assimilated into the body during the regeneration and delivering the essential pharmacological agents in a temporal and spatially specific manner is a tremendous goal. This review essentially deals with the various approaches for designing a multidisciplinary translational smart matrix for addressing the various skin related ailments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.msec.2016.05.074 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!