Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Adiponectin has multiple functions including insulin sensitization, anti-inflammation and antiatherogenesis in various organs. Adiponectin activates 5'-adenosine monophosphate-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor (PPAR)α via the adiponectin receptor (AdipoR) 1 and 2, which are critical for regulating lipids and glucose homeostasis and for controlling oxidative stress. We investigated whether resveratrol can inhibit renal damage in type 2 diabetic db/db mice and the underlying mechanisms of its effects.
Methods: Four groups of male C57 BLKS/J db/m and db/db mice and human glomerular endothelial cells (HGECs) were used. Resveratrol was administered to diabetic and nondiabetic mice by oral gavage for 12 weeks starting at 8 weeks of age.
Results: In db/db mice, resveratrol increased serum adiponectin levels and decreased albuminuria, glomerular matrix expansion, inflammation and apoptosis in the glomerulus. Resveratrol increased the phosphorylation of AMPK and silent information regulator T1 (SIRT1), and decreased phosphorylation of downstream effectors class O forkhead box (FoxO)1 and FoxO3a via increasing AdipoR1 and AdipoR2 in the renal cortex. Furthermore, resveratrol increased expression of PPARγ coactivator (PGC)-1α, estrogen-related receptor-1α, and phosphorylated acetyl-CoA carboxylase and decreased sterol regulatory element-binding protein 1. This effect lowered the content of nonesterified fatty acid and triacylglycerol in the kidneys, decreasing apoptosis, oxidative stress and activating endothelial nitric oxide synthase. Resveratrol prevented cultured HGECs from undergoing high-glucose-induced oxidative stress and apoptosis by activating the AMPK-SIRT1-PGC-1α axis and PPARα through increases in AdipoR1 and AdipoR2 expression.
Conclusions: These results suggest that resveratrol prevents diabetic nephropathy by ameliorating lipotoxicity, oxidative stress, apoptosis and endothelial dysfunction via increasing AdipoR1 and AdipoR2 expression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4902973 | PMC |
http://dx.doi.org/10.1186/s12967-016-0922-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!