An annulation of arylthioamides with 3-bromopyruvic acid chloride to 5-hydroxy-4H-1,3-thiazin-4-ones has been developed. The initial condensation affords two regioisomeric thiazolinone intermediates in a temperature-dependent manner. The synthesis of the 2-aminophenylthiazinone derivative led to the revision of the previously proposed structure of thiasporine A. Synthesis of the revised structure and NMR analysis revealed that thiasporine A had been isolated as a carboxylate.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.orglett.6b01166DOI Listing

Publication Analysis

Top Keywords

one-pot synthesis
4
synthesis 5-hydroxy-4h-13-thiazin-4-ones
4
5-hydroxy-4h-13-thiazin-4-ones structure
4
structure revision
4
revision synthesis
4
synthesis nmr
4
nmr shift
4
shift dependence
4
dependence thiasporine
4
thiasporine annulation
4

Similar Publications

Iridium-catalysed C-H borylation of β-aryl-aminopropionic acids.

Org Biomol Chem

September 2020

GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, School of Chemistry, University of Nottingham, Triumph Road, Nottingham, NG7 2TU, UK.

Iridium-catalysed catalytic, regioselective C-H borylation of β-aryl-aminopropionic acid derivatives gives access to 3,5-functionalised protected β-aryl-aminopropionic acid boronates. The synthetic versatility of these new boronates is demonstrated through sequential one-pot functionalisation reactions to give diverse building blocks for medicinal chemistry. The C-H borylation is also effective for dipeptide substrates.

View Article and Find Full Text PDF

The -doped biochar is recognized as a promising, cost-effective, and efficient material for CO adsorption. However, achieving efficient enrichment of -containing adsorption sites and improving their accessibility remains a bottleneck problem that restricts the adsorption performance of -doped biochar. Herein, a synthesis strategy for nitrogen-doped biochar by one-pot ionothermal treatment of biomass and zeolitic imidazolate framework (ZIF) precursors accompanied by pyrolysis is demonstrated.

View Article and Find Full Text PDF

Artificial cell-free system for the sustainable production of acetoin from bioethanol.

Bioresour Technol

January 2025

Department of Chemical, Biological and Environmental Engineering, Engineering School, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain. Electronic address:

The present work introduces and validates an artificial cell free system for the synthesis of acetoin from ethanol, representing a greener alternative to conventional chemical synthesis. The one pot multi-enzymatic system, which employs pyruvate decarboxylase from Zymobacter palmae (ZpPDC), alcohol dehydrogenase from Saccharomyces cerevisiae (ScADH), and NADH oxidase from Streptococcus pyogenes (SpNOX), achieves nearly 100 % substrate conversion and reaction yield within 6 h under optimal conditions (pH 7.5, enzyme activities: ZpPDC 100 U·mL, ScADH 50 U·mL, SpNOX 127 U·mL, and 1 mM NAD).

View Article and Find Full Text PDF

Some novel sulphonyl thiourea derivatives (7a-m) containing 4,6-diarylpyrimidine rings were designed and synthesized using a one-pot procedure. These compounds exhibited remarkable dual inhibitory activity against human carbonic anhydrase CA I, CA II, CA IX, and XII isoenzymes and some cancer cell lines. Among them, some thioureas had significantly more potent inhibitory activities in the order of 7l > 7c > 7f (against the CA I isoform), 7f > 7b > 7c (against the CA II isoform), 7c > 7g > 7a > 7b (against the CA IX isoform), and 7d > 7c > 7g > 7f (against the CA XII isoform).

View Article and Find Full Text PDF

We developed a facile one-pot method for fabricating physical gels consisting of ultrahigh molecular weight (UHMW) polymers and highly concentrated lithium salt electrolytes. We previously reported physical gels formed from the entanglement of UHMW polymers by radical polymerisation in aprotic ionic liquids. In this study, we found that the molecular weight of methacrylate polymers formed by radical polymerisation increased with the concentration of lithium salts in the organic solvents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!