Effects of a threonine-, tryptophan-, aspartic acid-, lysine-, leucine-, or methionine-free diet fed to rats on the metabolism of nicotinamide were investigated. The body weights of rats and food intakes were greatly decreased by feeding of the diet excluding any of the above essential amino acids compared to the control group, however, not by feeding of an aspartic acid-free diet. The sum of the urinary excretion of nicotinamide, N(1)-methylnicotinamide (MNA), N(1) -methyl-2-pyridone-5-carboxamide (2-Py), and N(1) -methyl-4-pyridone-3-carboxamide (4-Py) changed roughly in proportion to food intake. In the groups fed with the threonine- and lysine-free diets, the urinary excretion of MNA greatly increased compared with the control group during the whole experimental period and in the groups fed with the leucine- and methionine-free diets, increased excretion of MNA was observed on day o-day 1. Whenever the increase in MNA excretion was observed, a decrease in 4-Py excretion was observed. This was attributed to the activity of 4-Py-forming MNA oxidase decreasing when rats were fed with the diet excluding one of the essential amino acid except for tryptophan. Therefore, the (2-Py +4-Py)/MNA excretion was greatly decreased by feeding of the diet excluding one of the essential amino acids except for the tryptophan-free diet. These results strengthened our hypothesis that the (2-Py +4-Py)/MNA excretion reflects the adequacy of amino acid nutrition.

Download full-text PDF

Source
http://dx.doi.org/10.1271/bbb.56.783DOI Listing

Publication Analysis

Top Keywords

amino acid
12
leucine- methionine-free
12
diet excluding
12
excluding essential
12
essential amino
12
threonine- tryptophan-
8
tryptophan- aspartic
8
aspartic acid-
8
acid- lysine-
8
lysine- leucine-
8

Similar Publications

Background: Protein palmitoylation, a critical posttranslational modification, plays an indispensable role in various cellular processes, including the regulation of protein stability, mediation of membrane fusion, facilitation of intracellular protein trafficking, and participation in cellular signaling pathways. It is also implicated in the pathogenesis of diseases, such as cancer, neurological disorders, inflammation, metabolic disorders, infections, and neurodegenerative diseases. However, its regulatory effects on sperm physiology, particularly motility, remain unclear.

View Article and Find Full Text PDF

Background: Bok is a poorly characterized Bcl-2 protein family member with roles yet to be clearly defined. It is clear, however, that Bok binds strongly to inositol 1,4,5-trisphosphate (IP) receptors (IPRs), which govern the mobilization of Ca from the endoplasmic reticulum, a signaling pathway required for many cellular processes. Also known is that Bok has a highly conserved phosphorylation site for cAMP-dependent protein kinase at serine-8 (Ser-8).

View Article and Find Full Text PDF

Effects of levothyroxine therapy on bone and mineral metabolism in hypothyroidism: a systematic review and meta-analysis.

BMC Endocr Disord

January 2025

The First School of Clinical Medicine, Lanzhou University, No.199 Donggang West Road, Chengguan District, Lanzhou, Gansu Province, 730000, China.

Background: Thyroid hormone plays an important role in accumulating bone development and regulating bone metabolism. It is established that hypothyroidism is linked to increased risk of osteoporosis and fracture. However, the effects of levothyroxine (LT4) treatment on bone for hypothyroid patients remain controversial.

View Article and Find Full Text PDF

A reduction-secretion system contributes to roxarsone (V) degradation and efflux in Brevundimonas sp. M20.

BMC Microbiol

January 2025

School of Laboratory Animal & Shandong Laboratory Animal Center, Shandong First Medical University, Shandong Academy of Medical Sciences, Ji'nan, Shandong, 250117, China.

Roxarsone (V) (Rox(V)) is an organoarsenical compound that poses significant risks to aquatic ecosystems and various diseases. Reducing trivalent 3-amino-4-hydroxyphenylarsonic acid (HAPA(III)) offers a competitive advantage; however, it leads to localized arsenic contamination, which can disrupt the soil microbiome and impede plant growth. Three genes, BsntrA, arsC2, and BsexpA, encoding nitroreductase, arsenate reductase, and MFS transporter, respectively, were identified in the Rox(V)-resistant strain Brevundimonas sp.

View Article and Find Full Text PDF

Insights of cellular and molecular changes in sugarcane response to oxidative signaling.

BMC Plant Biol

January 2025

Bioinformatics Multidisciplinary Environment, IMD, Universidade Federal Do Rio Grande Do Norte, Natal, Brazil.

Significant changes in the proteome highlight essential metabolic adaptations for development and oxidative signaling induced by the treatment of young sugarcane plants with hydrogen peroxide. These adaptations suggest that hydrogen peroxide acts not only as a stressor but primarily as a signaling molecule, triggering specific metabolic pathways that regulate growth and plant resilience. Sugarcane is a crucial crop for sugar and ethanol production, often influenced by environmental signals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!