Replication defective lentiviruses or retroviruses are capable of stably integrating transgenes into the genome of an infected host cell. This technique has been widely used to encode fluorescent proteins, opto- or chemo-genetic controllers of cell activity, or heterologous expression of human genes in model organisms. These viruses have also successfully been used to deliver recombinases to relevant target sites in transgenic animals, or even deliver small hairpin or micro RNAs in order to manipulate gene expression. While these techniques have been fruitful, they rely on transgenic animals (recombinases) or frequently lack high efficacy and specificity (shRNA/miRNA). In contrast, the CRISPR/Cas system uses an exogenous Cas nuclease which targets specific sites in an organism's genome via an exogenous guide RNA in order to induce double stranded breaks in DNA. These breaks are then repaired by non-homologous end joining (NHEJ), producing insertion and deletion (indel) mutations that can result in deleterious missense or nonsense mutations. This manuscript provides detailed methods for the design, production, injection, and validation of single lenti/retro virus particles that can stably transduce neurons to express a fluorescent reporter, Cas9, and sgRNAs to knockout genes in a model organism.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4927708 | PMC |
http://dx.doi.org/10.3791/53783 | DOI Listing |
Brief Bioinform
November 2024
School of Engineering, Westlake University, No. 600 Dunyu Road, 310030 Zhejiang, P.R. China.
Single-cell RNA sequencing (scRNA-seq) offers remarkable insights into cellular development and differentiation by capturing the gene expression profiles of individual cells. The role of dimensionality reduction and visualization in the interpretation of scRNA-seq data has gained widely acceptance. However, current methods face several challenges, including incomplete structure-preserving strategies and high distortion in embeddings, which fail to effectively model complex cell trajectories with multiple branches.
View Article and Find Full Text PDFCirc Genom Precis Med
January 2025
Centre for Heart Lung Innovation, University of British Columbia, Vancouver. (K.H., M.A., L.R., Y.L., A.S., H.H., L.R.B., Z.W.L.).
Background: Protein-truncating mutations in the titin gene are associated with increased risk of atrial fibrillation. However, little is known about the underlying pathophysiology.
Methods: We identified a heterozygous titin truncating variant (TTNtv) in a patient with unexplained early onset atrial fibrillation and normal ventricular function.
Front Immunol
January 2025
Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Municipality, Department of Nutrition and Health, China Agricultural University, Beijing, China.
Introduction: Synbiotics have revealed the possibility of improving constipation through gut microbiota. The synergistic efficacy of subsp. lactis BL-99 (BL-99) and fructooligosaccharide (FOS) on constipation have not been investigated.
View Article and Find Full Text PDFFront Immunol
January 2025
Tianjin Chest Hospital, Tianjin University, Tianjin, China.
Background: Macrophages play a dual role in the tumor microenvironment(TME), capable of secreting pro-inflammatory factors to combat tumors while also promoting tumor growth through angiogenesis and immune suppression. This study aims to explore the characteristics of macrophages in lung adenocarcinoma (LUAD) and establish a prognostic model based on macrophage-related genes.
Method: We performed scRNA-seq analysis to investigate macrophage heterogeneity and their potential pseudotime evolutionary processes.
Front Immunol
January 2025
National Key Laboratory of Draggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.
Background: Hepatocellular carcinoma (HCC) is one of the most prevalent causes of cancer-related morbidity and mortality worldwide. Late-stage detection and the complex molecular mechanisms driving tumor progression contribute significantly to its poor prognosis. Dysregulated R-loops, three-stranded nucleic acid structures associated with genome instability, play a key role in the malignant characteristics of various tumors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!