Duchenne muscular dystrophy (DMD) is one of the most common lethal genetic diseases worldwide, caused by mutations in the dystrophin (DMD) gene. Exon skipping employs short DNA/RNA-like molecules called antisense oligonucleotides (AONs) that restore the reading frame and produce shorter but functional proteins. However, exon skipping therapy faces two major hurdles: limited applicability (up to only 13% of patients can be treated with a single AON drug), and uncertain function of truncated proteins. These issues were addressed with a cocktail AON approach. While approximately 70% of DMD patients can be treated by single exon skipping (all exons combined), one could potentially treat more than 90% of DMD patients if multiple exon skipping using cocktail antisense drugs can be realized. The canine X-linked muscular dystrophy (CXMD) dog model, whose phenotype is more similar to human DMD patients, was used to test the systemic efficacy and safety of multi-exon skipping of exons 6 and 8. The CXMD dog model harbors a splice site mutation in intron 6, leading to a lack of exon 7 in dystrophin mRNA. To restore the reading frame in CXMD requires multi-exon skipping of exons 6 and 8; therefore, CXMD is a good middle-sized animal model for testing the efficacy and safety of multi-exon skipping. In the current study, a cocktail of antisense morpholinos targeting exon 6 and exon 8 was designed and it restored dystrophin expression in body-wide skeletal muscles. Methods for transfection/injection of cocktail oligos and evaluation of the efficacy and safety of multi-exon skipping in the CXMD dog model are presented.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4927712 | PMC |
http://dx.doi.org/10.3791/53776 | DOI Listing |
Genes (Basel)
November 2024
Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
Background/objectives: Antisense oligonucleotide (ASO)-mediated exon-skipping is an effective approach to restore the disrupted reading frame of the dystrophin gene for the treatment of Duchenne muscular dystrophy (DMD). Currently, four FDA-approved ASOs can target three different exons, but these therapies are mutation-specific and only benefit a subset of patients. Understanding the broad applicability of exon-skipping approaches is essential for prioritizing the development of additional therapies with the greatest potential impact on the DMD population.
View Article and Find Full Text PDFNAR Mol Med
October 2024
Center for Genetic Diseases, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Rd, North Chicago, IL 60064, USA.
Front Neurosci
July 2024
Department of Biomedical Sciences, Iowa State University, Ames, IA, United States.
Introduction: The U1 small nuclear RNA (snRNA) forms ribonucleoprotein particles (RNPs) such as U1 snRNP and U1-TAF15 snRNP. U1 snRNP is one of the most studied RNPs due to its critical role in pre-mRNA splicing in defining the 5' splice site (5'ss) of every exon through direct interactions with sequences at exon/intron junctions. Recent reports support the role of U1 snRNP in all steps of transcription, namely initiation, elongation, and termination.
View Article and Find Full Text PDFClin Chem
January 2024
Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas-Universidad de Valladolid (CSIC-UVa), Valladolid, Spain.
Background: Disrupted pre-mRNA splicing is a frequent deleterious mechanism in hereditary cancer. We aimed to functionally analyze candidate spliceogenic variants of the breast cancer susceptibility gene CHEK2 by splicing reporter minigenes.
Methods: A total of 128 CHEK2 splice-site variants identified in the Breast Cancer After Diagnostic Gene Sequencing (BRIDGES) project (https://cordis.
NAR Genom Bioinform
September 2023
Institute for Computational Systems Biology, University of Hamburg, Notkestrasse 9, 22607 Hamburg, Germany.
MicroRNAs (miRNAs) are small non-coding RNA molecules that bind to target sites in different gene regions and regulate post-transcriptional gene expression. Approximately 95% of human multi-exon genes can be spliced alternatively, which enables the production of functionally diverse transcripts and proteins from a single gene. Through alternative splicing, transcripts might lose the exon with the miRNA target site and become unresponsive to miRNA regulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!