Production and characterization of enzymatic cocktail produced by Aspergillus niger using green macroalgae as nitrogen source and its application in the pre-treatment for biogas production from Ulva rigida.

Bioresour Technol

Laboratoire de bioprocédés environnementaux, Laboratoire Mixte International (LMI) (Cosys-Med), Centre de Biotechnologie de Sfax, B.P. ''1177'', 3018 Sfax, Tunisia. Electronic address:

Published: September 2016

Marine macroalgae are gaining more and more importance as a renewable feedstock for durable bioenergy production, but polysaccharides of this macroalgae are structurally complex in its chemical composition. The use of enzymatic hydrolysis may provide new pathways in the conversion of complex polysaccharides to fermentable sugars. In this study, an enzymatic cocktail with high specificity was first isolated from Aspergillus niger using the green macroalgae Ulva rigida as nitrogen source. The cocktail is rich on β-glucosidase, pectinase and carboxy-methyl-cellulase (CMCase). The highest activity was obtained with β-glucosidase (109IUmL(-1)) and pectinase (76IUmL(-1)), while CMCase present the lowest activity 4.6IUmL(-1). The U. rigida pre-treatment with this enzymatic cocktail showed high rate of reduced sugar release, and could bring promising prospects for enzymatic pre-treatment of the biogas production from U. rigida biomass which reached 1175mLgCODint(-1).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2016.05.067DOI Listing

Publication Analysis

Top Keywords

enzymatic cocktail
12
aspergillus niger
8
niger green
8
green macroalgae
8
nitrogen source
8
pre-treatment biogas
8
biogas production
8
ulva rigida
8
cocktail high
8
enzymatic
5

Similar Publications

Unlocking soybean meal pectin recalcitrance using a multi-enzyme cocktail approach.

Sci Rep

January 2025

BBF, Biodiversité et Biotechnologie Fongiques, INRAE, Aix-Marseille Univ, Marseille, France.

Article Synopsis
  • Pectin is a complex substance in plant cell walls, crucial for breaking down in animal feed to enhance nutrient absorption.
  • Significant amounts of pectin are found in soybean meal, a common poultry feed, but its structure and the necessary enzymes for degradation are not well understood.
  • The study developed and tested various combinations of fungal enzymes, identifying 10 effective ones for breaking down soybean meal pectin, mainly from the fungus Talaromyces versatilis, and proposes a new structural model for understanding pectin in feed.
View Article and Find Full Text PDF

Evaluation of Anti-Obesity Potential of Isolated Bioactive Fractions from Justicia Adhatoda Leaves: An In Vitro, In Vivo, and 3T3-L1 cell line Approach Using HPTLC-MS-MSn for Compound Identification.

Chem Biodivers

January 2025

Birla Institute of Technology, Pharmaceutical Sciences & Technology, Dept of pharmaceutical sciences & Technology,BIT, Mesra, Ranchi, BIT,Mesra, Ranchi, 835215, Ranchi, INDIA.

This study was conducted to investigate the anti-obesity effects of bioactive fractions JAF2 and JAF3 from Justicia adhatoda (JA) in vitro using enzymatic assays, 3T3-L1 cells and in vivo using a monosodium glutamate-high-fat diet (MSG-HFD) model. High-Performance Thin Layer Chromatography coupled with Mass Spectrometry (HPTLC-MS-MSn) was finally utilized to analyze bioactive fractions for the compounds responsible for the activity. In vitro, the anti-obesity effects of JAF2 and JAF3 were assessed in 3T3-L1 adipocytes, revealing that JAF2 significantly reduced lipid and triglyceride levels.

View Article and Find Full Text PDF

In this study, we fully sequenced and analyzed the genome of strain 12219 and identified it as Streptomyces thermocarboxydus. The genome contained a single linear chromosome, 6,950,031 bp in size, with a GC content of 72.21 %.

View Article and Find Full Text PDF

Background: Spent coffee grounds (SCG) are the most abundant waste byproducts generated from coffee beverage production worldwide. Typically, these grounds are seen as waste and end up in landfills. However, SCG contain valuable compounds that can be valorized and used in different applications.

View Article and Find Full Text PDF

Cutting-edge advances in strain and process engineering for boosting cellulase production in Trichoderma reesei.

Bioresour Technol

December 2024

Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, People's Republic of China; Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, Canada. Electronic address:

Low-cost production of cellulases is a key factor in advancing the commercialization of lignocellulosic biorefinery. Thus far, Trichoderma reesei is the leading cellulase producer for biorefinery applications. Over 70 years of research, considerable advancements have been made in comprehending the mechanisms underlying cellulases biosynthesis and secretion in T.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!