Background: Gait and balance disorders are common in Parkinson's disease (PD) and major contributors to increased falling risk. Predictive and reactive adjustments can improve recovery performance after gait perturbations. However, these mechanisms have not been investigated in young-onset PD.
Objective: We aimed to investigate the effect of gait perturbations on dynamic stability control as well as predictive and reactive adaptability to repeated gait perturbations in young PD patients.
Methods: Fifteen healthy controls and twenty-five young patients (48±5yrs.) walked on a walkway. By means of a covered exchangeable element, the floor surface condition was altered to induce gait perturbations. The experimental protocol included a baseline on a hard surface, an unexpected trial on a soft surface and an adaptation phase with 5 soft trials to quantify the reactive adaptation. After the first and sixth soft trials, the surface was changed to hard, to examine after-effects and, thus, predictive motor control. Dynamic stability was assessed using the 'extrapolated center of mass' concept.
Results: Patients' unperturbed walking was less stable than controls' and this persisted in the perturbed trials. Both groups demonstrated after-effects directly after the first perturbation, showing similar predictive responses. However, PD patients did not improve their reactive behavior after repeated perturbations while controls showed clear locomotor adaptation.
Conclusions: Our data suggest that more unstable gait patterns and a less effective reactive adaptation to perturbed walking may be a disease-related characteristic in young PD patients. These deficits were related to reduced ability to increase the base of support.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gaitpost.2016.05.008 | DOI Listing |
Gait Posture
January 2025
Department of Physical Performance, Norwegian School of Sports Sciences, Oslo, Norway. Electronic address:
Background: Chronic ankle instability (CAI) has been associated with neuromuscular control dysfunction, particularly of the peroneal musculature.
Research Question: How do neuromuscular characteristics of the peroneal muscles, including corticospinal excitability, strength, proprioception (force sense) and electromyographic measures differ in individuals with CAI compared to healthy control counterparts aged 18-45?
Methods: A systematic review with meta-analysis was conducted by retrieving relevant articles from electronic databases including EBSCOhost (CINAHL Complete, AMED, SPORTDiscus), Ovid (MEDLINE, Embase), Web of Science, Scopus and Cochrane Library as well as Grey literature sources. The eligibility and methodological quality of the included case-control and cross-sectional studies were assessed by two reviewers.
J Neuroeng Rehabil
January 2025
Department of Mechanical & Aerospace Engineering, University of Florida, Gainesville, FL, USA.
Background: Advanced age brings a loss of plantar sensation, represented, for example, as higher sensation thresholds in standardized testing. This is thought to contribute to an increased risk of falls among older adults - an intuitive premise that has yet to be fully investigated, especially in the context of walking balance. The purpose of this study was to quantify the association between plantar sensation and the instability elicited by a suite of walking balance perturbations that differ in direction and context in a cohort of n = 28 older adults (73.
View Article and Find Full Text PDFJ Biomech
January 2025
Biorobotics and Biomechanics Lab, Department of Mechanical Engineering, University of Maine, Orono, 04469, ME, United States of America. Electronic address:
Interlimb coordination can be used as a metric to study the response of the neuromuscular system to mechanical perturbations and behavioral information. Behavioral information providing haptic feedback on thigh angle has been shown to increase stride length and consequently walking speed, but the effect of such feedback on limb coordination has not been determined. The current work investigates the effects of this feedback on lower-limb coordination and examines if such effects are dependent on the age of the walker.
View Article and Find Full Text PDFComplement Ther Clin Pract
January 2025
Department of Kinesiology and Health, Georgia State University, Atlanta, GA, 30303, USA. Electronic address:
Background: Falls are a global health concern facing older adults. Ballet emphasizes postural control, coordination, and leg muscle strength. Previous work indicated young professional ballet dancers adapt more effectively to repeated standing-slips than non-dancers as evidenced by better reactive improvements in dynamic gait stability and step latency.
View Article and Find Full Text PDFGait Posture
December 2024
School of Health and Exercise Sciences, The University of British Columbia Okanagan, Kelowna, British Columbia, Canada. Electronic address:
Background: To maintain standing balance, vestibular cues are processed and integrated with other sensorimotor signals to produce appropriate motor adjustments. Whole-body vestibular-driven postural responses are context-dependent and transformed based upon head and foot posture. Previous reports indicate the importance of intrinsic foot muscles during standing, but it is unclear how vestibular-driven responses of these muscles are modulated by alterations in stability and head posture.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!